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Abstract: This research explores how Machine Learning and AI can be used to 

enhance energy efficiency, forecast energy consumption trends, and optimize 

energy systems in the USA. This research used datasets comprising household 

energy usage, electric vehicle adoption trends, and smart grid analytics obtained 

from public sources, databases, and IoT sensor devices. This study applies 

advanced machine learning techniques such as deep learning, regression models, 

and ensemble learning to improve forecasting accuracy aimed at achieving 

efficient resource allocation. Additionally, this study investigates fault prediction 

in New Energy Vehicles (NEVs) and its implications for grid stability and energy 

demand management. The research also examines the socioeconomic impact of AI-

driven energy policies and highlights their role in reducing carbon footprints, 

promoting energy equity, and fostering sustainable economic growth. Recurrent 

Neural Networks are applied to predict energy consumption trends and electric 

vehicle(EV) adoption rates by analyzing historical usage data. Convolutional 

Neural Networks and Autoencoders are used for anomaly detection in NEV battery 

performance and predictive maintenance. Deep Learning models also use real-time 

IoT sensor data to enhance the efficiency of energy distribution in smart grids. 

Linear Regression models are used to predict household and industrial energy 

demand based on factors such as weather, pricing, and socioeconomic variables. 

Linear Regression also predicts energy consumption trends in hospitals and 

factories. Random Forest and XGBoost are used in energy demand forecasting and 

energy consumption clustering. Performance evaluation metrics such as Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²) are 

utilized to assess model accuracy and effectiveness. 

1. Introduction 
 
1.1 Background 

 

With advancements in renewable energy technologies, electric vehicles (EVs), and smart grid systems 

energy consumption in the USA has experienced significant shifts. Since traditional forecasting methods 

often fail to capture the complex dynamics of energy demand and supply, AI-powered predictive models 

are used to improve accuracy and decision-making [1-12]. According to Ahmed et al.(2025), machine 

learning models have been successfully employed to forecast  EV adoption trends, assess household 

energy consumption, and predict hospital energy efficiency, providing insights for sustainable energy 

policies [1]. AI-driven fault detection in New Energy Vehicles ensures the reliability of these emerging 

transportation solutions while minimizing energy wastage [7]. The combination of AI and ML in energy 

research has led to significant breakthroughs in demand-response systems, grid optimization, and 

renewable resource management [2]. Hossain et al.(2025) articulate that the socioeconomic benefits of 

these advancements extend beyond efficiency gains, as optimized energy strategies contribute to 

economic stability, cost savings, and reduced environmental impact [8].  

 

1.2 Importance Of the Research 

 

Sumon et al.(2024) posit that with the increasing demand for sustainable energy solutions, AI and ML 

have emerged as powerful tools for addressing energy efficiency challenges [13]. Traditional energy 
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management systems often rely on static models that fail to adapt to real-time fluctuations, leading to 

inefficiencies and energy waste. This consequently prompts the use of AI and machine learning in 

energy management systems [12]. Energy providers can also use AI-powered models to dynamically 

adjust grid loads, optimize renewable resource utilization, and implement real-time fault detection 

mechanisms [5]. Predictive analytics using AI and machine learning enables accurate forecasting of 

energy demand, grid stability, and socioeconomic impacts, which in turn fosters data-driven policy 

formulation to optimize energy consumption patterns in the USA [2]. Furthermore, machine learning 

techniques enhance energy equity, ensuring fair distribution and reducing energy poverty in underserved 

communities [1]. Given the pressing need for energy sustainability, climate action, and economic 

resilience, this research highlights how AI and ML contribute to the long-term viability of intelligent 

energy management systems. 

 

1.3 Objectives 

 

This research aims to explore how Artificial Intelligence (AI) and Machine Learning (ML) can transform 

the way we manage and optimize energy consumption in the USA. One key focus is improving energy 

consumption forecasting, ensuring that households, industries, and hospitals can better predict and plan 

for their energy needs. Traditional methods often struggle to capture the complexities of energy demand, 

but AI-driven models can analyze vast amounts of data and uncover hidden patterns to improve 

accuracy. Another important aspect of this study is renewable energy optimization. With increasing 

reliance on solar and wind power, it's crucial to develop models that can balance these energy sources 

with grid electricity to minimize waste and improve efficiency. Machine learning algorithms can help 

predict fluctuations in renewable energy generation and ensure a more stable and reliable power supply. 

Additionally, this research delves into fault detection in New Energy Vehicles (NEVs). As electric 

vehicles (EVs) become more common, maintaining their reliability and efficiency is essential. AI-

powered fault prediction systems can identify potential issues before they become major problems, 

helping to extend battery life and improve overall performance. Beyond technical optimization, this 

study also examines the socioeconomic impact of AI-driven energy policies. By analyzing how AI can 

promote energy equity, reduce carbon footprints, and cut costs for consumers, we aim to provide 

valuable insights that can shape smarter, more sustainable policies. Ultimately, this research seeks to 

harness the power of AI and ML to create a more efficient, cost-effective, and environmentally friendly 

energy future. 

 

2. Literature Review 
 
2.1 Related Works 
 

The application of machine learning and artificial intelligence in the energy sector has gained significant 

attention in recent years. Sumon et al. (2024) highlighted that AI-based models have been instrumental 

in assessing the environmental and socio-economic impacts of renewable energy adoption, helping 

policymakers make more informed decisions [13]. Meanwhile, Shil et al. (2024) explored the predictive 

capabilities of machine learning for electric vehicle adoption, demonstrating how AI-driven approaches 

outperform traditional forecasting methods [12].  

It was emphasized that the transition to electric vehicles (EVs) has been a focal point of extensive 

research due to its significance in mitigating climate change, advancing urban planning, and promoting 

energy sustainability. Early studies in this domain primarily relied on conventional statistical techniques, 

such as linear regression and time-series analysis, to predict EV adoption trends.  

Similarly, Chowdhury et al. (2024) focused on the role of AI in household energy consumption, showing 

that intelligent modeling techniques can improve energy efficiency and demand-response strategies [5]. 

The role of AI and machine learning in energy management has significantly transformed predictive 

analytics and optimization strategies.  

Brynjolfsson et al.(2017) highlight how AI revolutionizes industries by facilitating data-driven decision-

making and optimizing complex systems, including energy grids [3]. The integration of deep learning 

techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), has 

further enhanced the accuracy of predictive modeling in energy forecasting (LeCun et al. 2015) [10].  



Chidera Victoria Ibeh, Ayodeji Adegbola  / IJASRAR, 2-1(2025)23–32 

25 
 

Additionally, Waller et al.(2013) emphasize the importance of big data analytics in improving supply 

chain and energy management, allowing for more precise demand forecasting and greater operational 

efficiency []15. 

While hydropower is often regarded as a clean energy source, it does pose risks to aquatic ecosystems. 

The construction of dams disrupts the natural river flow and threatens fish populations. Likewise, 

although geothermal plants have low emissions, they can lead to land subsidence or potentially trigger 

seismic events in some regions.  

Moreover, Hossain et al. (2025) introduced an AI-powered fault detection framework for New Energy 

Vehicles (NEVs), significantly enhancing battery reliability and vehicle performance [7]. Research by 

Barua et al. (2025) also underscored the importance of AI in optimizing urban energy consumption 

patterns, ensuring a more sustainable and efficient energy distribution system [2].  

Empirical studies support that energy-efficient technologies and practices have proven effective in 

various situations. For instance, smart thermostats that utilize machine learning can optimize heating 

and cooling schedules in homes, potentially leading to a reduction of up to 15% in household energy 

consumption, as indicated by research on residential energy use. In California, for instance, 

investigations have revealed significant energy savings resulting from retrofitting homes with advanced 

insulation and energy-efficient windows, particularly in regions experiencing extreme weather 

conditions. 

 

2.2 Gaps and Challenges 
 

Despite recent advancements in AI applications for energy management, several gaps remain. One of 

the most significant challenges is data availability and quality, as energy datasets often contain missing 

values or inconsistencies that can impact model performance [13].  

Additionally, while machine learning models have proven useful for predicting EV adoption rates, real-

time consumer behavior and external policy interventions remain difficult to integrate effectively [12].  

Gerossier et al. (2024) assert that, despite notable advancements, current predictive methods for electric 

vehicle (EV) adoption are fundamentally inadequate. These methods fall short in addressing the myriad 

of high-dimensional and interdependent variables that critically shape the EV market.  

Algorithmic bias in machine learning models can lead to an unfair distribution of energy resources, 

impacting energy equity and policy formulation [6]. Moreover, ethical concerns regarding AI’s role in 

sustainability must be addressed to ensure responsible deployment [9]. One of the key limitations of 

current AI models is their struggle to adapt to real-time fluctuations in energy demand.  

Schneider et al. (2021) suggest that adaptive AI frameworks, capable of learning from real-time data, 

could enhance model robustness and traditional approaches are ill-equipped to manage the complexity 

and nonlinearity of factors driving the diffusion of electric vehicles, including fluctuating fuel prices, 

inconsistent government subsidies, and rapid technological developments concerning both pledged and 

commercially available batteries [11].  

Time-series models, for instance, may analyze historical data, but they are incapable of effectively 

capturing abrupt changes in policy and technology, leaving significant gaps in predictive accuracy. 

Traditional approaches heavily depend on aggregate data and linear assumptions, which obscure 

variations in regional adoption rates and mask the essential trends in consumer behavior and preferences. 

This phenomenon is particularly pronounced in the United States, where electric vehicle adoption rates 

vary significantly across states due to stark differences in policy, climate, and socioeconomic conditions. 

Chowdhury et al. (2024) highlighted that scalability remains a significant limitation for many AI models, 

which are often trained on regional data and struggle to generalize effectively at a national level [5]. 

Hossain et al. (2025) further pointed out that AI-based fault prediction in new electric vehicles (NEVs) 

is complicated by variations in vehicle design and battery technology [7].   

Mamatha et al. (2024) demonstrate that, despite the advantages of NEVs, they are frequently plagued 

by various faults that significantly impair performance and diminish customer satisfaction. Common 

issues include traction battery degradation, charging system failures, and software malfunctions. These 

problems not only undermine vehicle functionality but also lead to increased maintenance costs and a 

decline in consumer confidence in NEV technology.  

The complexity of fault detection and resolution within NEV systems, which stems from their intricate 

integration of hardware and software, presents a substantial challenge. Addressing these issues requires 

improvements in data collection methods, enhanced model interpretability, and greater computational 

efficiency to ensure robust and reliable AI-driven energy solutions. 
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3. Methodology 
 

3.1 Data Collection and Preprocessing 

 

Data sources 

This study draws on a variety of datasets, including records of household and industrial energy 

consumption, real-time smart meter data, meteorological information, and logs of electric vehicle 

performance. Additionally, it utilizes publicly available data from the U.S. Energy Information 

Administration (EIA), the National Renewable Energy Laboratory (NREL), and industry reports 

detailing energy usage trends. Together, these sources create a comprehensive dataset that will be used 

to train machine learning models for predicting energy consumption patterns and optimizing the 

allocation of renewable energy. 

 

Data Preprocessing 

To ensure data integrity and enhance model accuracy, a range of preprocessing techniques is 

implemented. Missing values are addressed through the application of interpolation and imputation 

methods. Feature scaling techniques, including Min-Max scaling and standardization, are utilized to 

ensure consistency across diverse datasets. Outlier detection is conducted using Z-score analysis to 

identify and eliminate anomalies that may skew predictions. For time-series data, decomposition 

techniques are employed to effectively capture long-term trends and seasonal variations. Additionally, 

feature engineering is utilized to extract pertinent information from the dataset. 

 

 
 

Figure 1. This visualization provides a comprehensive overview of the data preprocessing steps necessary to 

clean and prepare the dataset for machine learning models. 

 
In Figure 1 the heatmap highlights missing values in the dataset, specifically within Energy 

Consumption records. Missing values can occur due to sensor failures, reporting delays, or inconsistent 

data logging. Handling these gaps is essential to maintain model accuracy. The second plot(Feature 

scaling: Energy Consumption Before and After Normalization) compares the distribution of raw vs. 

normalized energy consumption values. Normalization ensures that features are on a similar scale, 

preventing machine learning models from being biased toward large numerical values. The 

boxplot(Outlier Detection In Energy Consumption Data) identifies extreme values in energy 

consumption data. Outliers may result from unexpected spikes in energy use, faulty meter readings, or 

extreme weather conditions. Detecting and handling these values prevents misleading model 

predictions. The last visualization(Trend Component of Energy Consumption Over Time) extracts the 

long-term trend of energy consumption, filtering out seasonal and random variations. A clear upward or 

downward trend can indicate increasing energy demand or shifts in energy usage patterns over time. 
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3.2 Model Development 
 

The development of predictive models for sustainable energy applications requires a combination of 

advanced machine-learning techniques tailored to different use cases. This study employs deep learning, 

regression models, and ensemble learning to enhance forecasting accuracy and optimize energy 

distribution. Recurrent Neural Networks (RNNs) are utilized for energy consumption prediction and 

electric vehicle (EV) adoption trends, leveraging historical usage data to capture time-dependent 

patterns. Convolutional Neural Networks (CNNs) and Autoencoders are deployed for anomaly detection 

in New Energy Vehicle (NEV) battery performance, ensuring reliability and predictive maintenance. 

Linear regression models are applied to forecast household and industrial energy demand, incorporating 

external factors such as weather, pricing, and socioeconomic variables. Additionally, Random Forest 

and XGBoost models are used for energy consumption clustering and demand forecasting, providing 

robust predictions that account for nonlinear dependencies in the data. These models work collectively 

to improve energy efficiency, reduce waste, and enhance system reliability 

 

3.3 Model Training and Validation Procedures 

 

The development of predictive models for sustainable energy applications requires a blend of advanced 

machine-learning techniques tailored to various use cases. This study employs deep learning, regression 

models, and ensemble learning to enhance forecasting accuracy and optimize energy distribution. 

Recurrent Neural Networks (RNNs) are utilized for predicting energy consumption and tracking electric 

vehicle (EV) adoption trends by leveraging historical usage data to capture time-dependent patterns. 

Convolutional Neural Networks (CNNs) and Autoencoders are deployed for detecting anomalies in New 

Energy Vehicle (NEV) battery performance, ensuring reliability and enabling predictive maintenance. 

Linear regression models are applied to forecast energy demand for households and industries, 

incorporating external factors such as weather, pricing, and socioeconomic variables. Furthermore, 

Random Forest and XGBoost models are used for clustering energy consumption and forecasting 

demand, providing robust predictions that account for nonlinear dependencies in the data. Collectively, 

these models work together to improve energy efficiency, reduce waste, and enhance system reliability. 

In Figure 2, the pie chart shows the dataset split (70% training, 15% validation, 15% testing), whereas 

the heatmap represents how 5-fold Cross-validation is performed on the dataset. The Line plot represents 

the walk-forward validation strategy used in time-series forecasting models, this ensures the model does 

not use future information while training and helps capture seasonal and long-term trends in electricity 

demand, energy production, and climate-driven consumption patterns. This bar chart compares the class 

distribution before and after applying SMOTE (Synthetic Minority Over-sampling Technique) in 

imbalanced datasets. SMOTE is applied to prevent model bias and improve classification accuracy. 

 

 
Figure 2. The four visualizations provide a comprehensive overview of the training and validation procedures 

used in the study. 
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3.4 Performance Evaluation Metrics 
 

To effectively evaluate the performance of the developed models, we employed a range of statistical 

metrics tailored to each specific application. We utilized Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE) to measure prediction accuracy in energy demand forecasting, ensuring minimal 

deviation between predicted and actual values. R-squared (R²) was applied to definitively assess the 

explanatory power of regression models about household and industrial energy consumption. For 

anomaly detection in New Energy Vehicles (NEVs), we used precision, recall, and F1-score to 

rigorously evaluate classification accuracy. Furthermore, Receiver Operating Characteristic (ROC) 

curve analysis was performed to robustly assess model performance in distinguishing between normal 

and faulty conditions. In our economic impact analysis, we implemented Mean Absolute Error (MAE) 

alongside statistical significance tests to thoroughly validate the accuracy and reliability of the predictive 

models. By applying these rigorous evaluation metrics, this study firmly establishes that AI-driven 

energy optimization strategies are not only precise but also actionable for real-world implementation. 

 
4. Results and Discussion 
 
4.1 Model Performance 

 

To evaluate the effectiveness of the models used in this study, various performance metrics such as 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (R²), Precision, Recall, F1-

Score, and Area Under the Curve (AUC-ROC) were calculated for each domain. The comparison of 

different models, including deep learning architectures like RNNs and CNNs, regression models such 

as Linear Regression and XGBoost, as well as ensemble methods including Random Forest and Gradient 

Boosting, was visualized to highlight their strengths and weaknesses. In the context of energy 

consumption forecasting, RNNs emerged as the top performer, achieving an RMSE of 12.5 kWh and an 

R² of 0.91, which signifies a strong ability to capture time-dependent consumption trends. XGBoost 

followed closely behind, with an RMSE of 14.2 kWh and an R² of 0.88. For electric vehicle fault 

detection, CNN-based models showcased superior performance, recording an F1-score of 0.92 and an 

AUC-ROC of 0.96, significantly outperforming Logistic Regression and Random Forest, which had F1-

scores of 0.85 and 0.88, respectively. In renewable energy optimization, Random Forest and Gradient 

Boosting models excelled with the lowest MSE values, where Random Forest achieved an MSE of 3.1 

compared to 3.5 for Gradient Boosting, underscoring their effectiveness in optimizing solar and wind 

energy utilization. Lastly, in socioeconomic impact analysis, while linear regression models provided 

interpretable predictions with an R² of 0.79, XGBoost outperformed it with an R² of 0.85, indicating that 

it was more capable of capturing nonlinear dependencies. Figure 3 represents how accurate the models 

are in predicting energy consumption trends for households, industries, and hospitals. RMSE is the 

evaluation metric used with Convolutional Neural Networks and Recurrent Neural Networks being the 

best-performing models for this task. This is because RNNs and CNNs can capture sequential 

dependencies in time-series energy data as compared to other models like Linear Regression which 

struggles with complex non-linear energy trends. Accurate energy consumption predictions help grid 

operators, policymakers, and businesses optimize energy allocation, reduce waste, and ensure 

sustainability. Figure 4 visualizes how well each model explains variations in energy demand based on 

historical data. R-squared (R²) measures how much variance in energy consumption is explained by the 

model. A higher R² means the model captures most of the energy demand patterns. CNN and RNN 

performed best, meaning they effectively modeled energy consumption trends. Linear Regression 

performed the poorest, meaning it oversimplified complex energy patterns. A high R² ensures 

trustworthy predictions, allowing for better energy policy decisions, pricing strategies, and sustainable 

grid planning. Figure 5 addresses how well the models detect anomalies and faults in New Energy 

Vehicles (NEVs) and cybersecurity threats. F1-Score Balances precision (correct anomaly detections) 

and recall (detecting all anomalies). A higher F1 score means the model correctly identifies energy 

system faults and security breaches. The CNN model performed best, excelling at detecting faults in 

NEVs and security threats. Random Forest also performed well, balancing efficiency and accuracy. 

Logistic Regression struggled slightly, indicating a higher false positive rate. Reliable fault detection 

helps prevent power outages, optimize electric vehicle performance, and strengthen cybersecurity in 

energy grids. 
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Figure 3. Model performance for energy demand forecasting with Random Mean Squared Error(RMSE). 

 

 

 

Figure 4. Model performance visualization for energy demand forecasting using R-squared (R²). 

 

 

Figure 5. Model performance visualization for anomaly detection and detection of faults in New Energy 

Vehicles (NEVs) and cybersecurity threats. 
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Figure 6 visualizes how well the models distinguish between normal and faulty energy system behavior. 

AUC-ROC (Area Under the Curve - Receiver Operating Characteristic) measures a model's ability to 

classify faults correctly. A higher AUC-ROC means the model is better at differentiating between 

healthy and faulty states. CNN had the highest AUC-ROC, proving its superiority in NEV fault detection 

and cybersecurity anomaly detection. Random Forest performed well, but slightly lower than CNN. 

Logistic Regression showed a reduced ability to detect complex anomalies. A high AUC-ROC ensures 

early detection of system failures, preventing power disruptions, cybersecurity breaches, and 

inefficiencies in renewable energy grids. 

 

 

Figure 6. Model performance visualization for classification of normal and faulty energy systems behaviour. 

4.2 Discussion and Future Work 

 

The findings of this study highlight the important role of artificial intelligence (AI) and machine learning 

(ML) in optimizing sustainable energy applications. The results demonstrate that deep learning 

architectures, particularly recurrent neural networks (RNNs) and convolutional neural networks 

(CNNs), are very effective for time-series forecasting and anomaly detection tasks [12]. Additionally, 

ensemble methods such as Random Forest and XGBoost provide reliable predictions for energy 

optimization and economic analysis [2]. Big data analytics plays a crucial role in refining decision-

making processes by allowing AI models to adjust dynamically to fluctuating energy demands. 

Additionally, hybrid AI models that combine deep learning with econometric forecasting techniques can 

enhance predictive accuracy. Varian et al.(2014) highlight the potential of combining machine learning 

with traditional statistical methods to achieve better forecasting reliability, making it a promising avenue 

for future research [14]. 

However, despite these advancements, several challenges persist. One major limitation is computational 

complexity, especially for deep learning models that require significant processing power and large 

datasets. Furthermore, the explainability of AI models is a concern, particularly in the contexts of 

policymaking and economic forecasting, where interpretable models are preferred [8]. 

Future research should focus on developing hybrid AI models that combine deep learning with 

traditional econometric approaches to enhance both accuracy and interpretability. Incorporating real-

time data streams from the Internet of Things (IoT)-)-enabled smart grids could also improve model 

adaptability and performance. Additionally, further studies should investigate transfer learning 

techniques to enable models to generalize across various geographic and economic contexts [1]. 

5. Conclusion 
 

This study effectively demonstrates the substantial capabilities of artificial intelligence (AI) and 

machine learning (ML) in refining energy consumption forecasting, promoting greater use of renewable 

energy, and identifying faults in New Energy Vehicles (NEVs). Researchers utilized extensive datasets 

that included household energy consumption, trends in electric vehicle adoption, and smart grid 

analytics. They applied advanced AI techniques, including deep learning, regression models, and 
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ensemble learning, to significantly enhance forecasting accuracy and increase energy efficiency. The 

results confirm that deep learning models, particularly Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), deliver better performance than traditional regression models in 

predicting energy consumption trends, achieving higher accuracy and noticeably lower error rates. 

Additionally, ensemble methods such as Random Forest and XGBoost are highly effective in optimizing 

renewable energy distribution and reducing energy waste. The study also emphasizes the essential role 

of AI-powered fault detection in NEVs, which improves grid stability and manages energy demand more 

effectively. While the study presents compelling results, it recognizes several challenges that need to be 

addressed, including algorithmic bias, computational complexity, and the demand for real-time data 

integration. Future research must focus on creating hybrid AI models that combine deep learning with 

econometric forecasting approaches to enhance both accuracy and interpretability. Furthermore, 

integrating IoT-enabled smart grids and utilizing transfer learning techniques is crucial for adapting 

models to a variety of geographic and economic contexts. By tackling these challenges, AI-driven 

energy solutions have the potential to significantly impact the development of a more sustainable, cost-

effective, and environmentally friendly energy system in the USA. 
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