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Abstract: The rise of digital finance has led to a surge in fraudulent activities, 

particularly in credit card transactions and cryptocurrency ecosystems. With 

financial crimes becoming more sophisticated, traditional fraud detection methods 

often fail to identify complex fraudulent patterns. This research explores the 

application of machine learning (ML) and artificial intelligence (AI) techniques to 

enhance the security of digital finance by detecting fraudulent activities in credit 

card transactions and cryptocurrency wallets within the USA. The study utilizes 

large-scale transaction datasets containing key financial indicators such as 

transaction frequency, spending patterns, anomaly scores, and network behaviors. 

To develop an AI-driven fraud detection framework, we implement and compare 

six machine learning models: XGBoost, RLightGBM, Decision Trees, K-Nearest 

Neighbors (KNN), Convolutional Neural Networks (CNNs), and Autoencoders. 

The models are trained on both structured financial data (e.g., credit card 

transaction logs) and unstructured blockchain transaction records (e.g., Bitcoin 

wallet addresses and transaction flows). To address data imbalance, the study 

applies the Synthetic Minority Over-sampling Technique (SMOTE), ensuring fair 

representation of fraudulent transactions. Model performance is evaluated using 

Precision, Recall, F1-score, and ROC-AUC metrics to determine the most effective 

fraud detection approach. Additionally, the research emphasizes data privacy and 

security, incorporating anonymization techniques and regulatory compliance 

measures to safeguard sensitive financial information. This study contributes to the 

ongoing fight against financial fraud by demonstrating how AI-based solutions can 

enhance the security and resilience of digital finance systems in the USA. 

1. Introduction 

 
1.1 Background 

 

The digital finance ecosystem has experienced remarkable transformation and exponential growth over 

the past decade, driven by groundbreaking innovations in cryptocurrencies, decentralized finance 

(DeFi), and advanced online payment systems. These technological advancements have significantly 

enhanced financial accessibility and operational efficiency across the globe. However, alongside these 

benefits, a darker shadow has emerged: the proliferation of vulnerabilities that have escalated the risk 

of fraudulent activities in both credit card transactions and cryptocurrency wallets [1-5]. Traditional 

fraud detection systems, which primarily depend on rule-based algorithms and manual audits, are 

increasingly inadequate when faced with the evolving and sophisticated tactics employed by 

cybercriminals [6-13]. As fraudsters adapt and innovate, these outdated methods struggle to effectively 

safeguard against the growing threats in the digital landscape. 

The rise of Bitcoin and various cryptocurrencies has added further complexity to the challenges of fraud 

detection. Characterized by their pseudo-anonymity, decentralized transaction structures, and a glaring 

absence of stringent regulatory oversight, these digital currencies present unique obstacles. Unlike 

traditional banking systems, where transactions are monitored by central authorities that can trace 

suspicious activities, blockchain-based financial movements operate independently. This 

decentralization complicates the ability to identify and track potentially illicit behavior through 

conventional fraud detection mechanisms. Consequently, there has been a marked increase in demand 
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for AI-driven fraud detection techniques that harness the power of big data analytics to scrutinize large-

scale transaction datasets, effectively identify anomalies, and proactively prevent illicit activities [12].  

Recent studies posit the alarming sophistication of financial fraud, revealing that criminals are 

employing cutting-edge technologies such as automated botnets, deepfake technologies, and AI-

generated phishing attacks to exploit vulnerabilities within financial systems [9]. Additionally, they are 

utilizing advanced machine learning techniques—such as reinforcement learning—to enhance their 

strategies, making it even more imperative for financial institutions to adopt innovative, robust defence’s 

against the shifting landscape of cyber threats.  

 

1.2 Importance of This Research 

 

The growing reliance on digital payments and blockchain transactions has made fraud detection an 

essential component of financial security. Cybercriminals continuously adapt their techniques, 

employing sophisticated methods such as synthetic identity fraud, account takeovers, phishing attacks, 

and illicit blockchain transactions to evade detection [5]. Traditional fraud detection models often 

struggle with false positives, slow response times, and an inability to adapt to new fraudulent patterns 

[3]. This creates an urgent demand for AI-based fraud detection systems capable of providing real-time 

anomaly detection and proactive risk mitigation. In the credit card industry, financial institutions face 

billions of dollars in fraud-related losses each year due to unauthorized transactions and data breaches. 

Fraudulent transactions often exhibit subtle behavioral patterns, making them difficult to detect using 

rule-based monitoring systems [13]. Similarly, in the cryptocurrency domain, scammers exploit 

decentralized platforms to conduct money laundering, Ponzi schemes, and pump-and-dump frauds, 

which require intelligent fraud detection mechanisms to identify illicit activity without disrupting 

legitimate transactions [3]. Emerging AI-driven security frameworks have demonstrated higher 

accuracy rates in detecting fraud than traditional methods. For example, a study by Wang et al. (2023) 

found that deep learning models outperform conventional fraud detection techniques, achieving a 25% 

improvement in fraud detection rates for financial institutions [14-16]. Similarly, hybrid AI models 

combining supervised and unsupervised learning have been shown to reduce false positive rates while 

improving the detection of previously unseen fraud patterns [10]. Additionally, fraud detection is closely 

tied to regulatory compliance. Governments worldwide are implementing stricter financial security 

policies, such as the Bank Secrecy Act (BSA) and the Financial Crimes Enforcement Network (FinCEN) 

regulations, to combat digital fraud [12]. AI-powered fraud detection systems can help businesses 

comply with these regulations by automating risk assessment, detecting suspicious transactions in real-

time, and reducing manual investigation efforts [1]. 

 

1.3 Research Objective 

 

The primary objective of this research is to develop and assess AI-based fraud detection methods for 

credit card transactions and cryptocurrency wallets in the USA. This study focuses on analyzing large-

scale digital transaction datasets to identify critical fraud indicators, including suspicious transaction 

patterns, unusual spending behavior, and illicit blockchain activities. To achieve this, the research will 

apply XGBoost,  LightGBM, Decision Trees, K-Nearest Neighbors (KNN), Convolutional Neural 

Networks (CNNs), and Autoencoders to create an automated fraud detection system capable of 

accurately identifying fraudulent activities.To determine the effectiveness of these models, the study 

will evaluate their performance using key metrics such as Precision, Recall, F1-Score, and Matthews 

Correlation Coefficient (MCC) to identify the most reliable fraud detection approach. Additionally, this 

research will examine how AI-driven security solutions can help mitigate financial fraud risks, reduce 

false positives, and improve real-time fraud detection. Furthermore, the study will explore the role of 

AI-based fraud detection in regulatory compliance, data privacy, and consumer trust within digital 

financial ecosystems, providing insights into how advanced AI technologies can enhance financial 

security while ensuring compliance with industry regulations. 

 

2. Literature Review 

2.1 Related Works 

 

The rise of digital financial transactions has led to increased fraud risks, particularly in credit card 

payments and cryptocurrency ecosystems. To combat these challenges, researchers have explored 
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various machine learning (ML) and artificial intelligence (AI) techniques for fraud detection. Traditional 

rule-based systems, which rely on predefined fraud patterns, have proven ineffective against evolving 

cyber threats [5]. As a result, AI-driven fraud detection models have gained prominence, offering 

adaptive and real-time anomaly detection capabilities. Several studies have focused on ML-based credit 

card fraud detection.  

For instance, Sizan et al. (2025) examined the effectiveness of ensemble learning techniques, 

demonstrating that Random Forest and Gradient Boosting models outperform traditional statistical 

methods [13]. Additionally, deep learning models such as Autoencoders and Convolutional Neural 

Networks (CNNs) have been applied to detect fraudulent credit card transactions by identifying subtle 

spending pattern anomalies [10].  

In the cryptocurrency sector, AI techniques have been instrumental in identifying fraudulent Bitcoin 

wallet transactions. Research by Das et al. (2025) analyzed scam patterns in blockchain ecosystems, 

highlighting how Graph Neural Networks (GNNs) can model transaction dependencies to uncover illicit 

financial activities. Similarly, anomaly detection models have been applied to detect pump-and-dump 

schemes, Ponzi frauds, and money laundering activities in decentralized finance [1].  

Another emerging area of fraud detection research is hybrid AI approaches. Studies have demonstrated 

that combining supervised and unsupervised learning techniques enhances fraud detection accuracy 

while reducing false positive rates [16]. Patel & Shah (2024) explored the use of reinforcement learning 

(RL) in fraud detection, showing that RL-based models can dynamically adapt to new fraud tactics used 

by cybercriminals [11]. Furthermore, federated learning techniques have been introduced to enable fraud 

detection across multiple financial institutions without compromising data privacy [9]. Although AI-

based fraud detection has shown promising results, there remain challenges in implementing these 

models at scale. As financial fraud techniques continue to evolve, ongoing research is needed to enhance 

fraud detection accuracy, minimize false positives, and improve model interpretability [12]. 

 

2.2 Gaps and Challenges 

 

Despite advancements in AI-driven fraud detection, several gaps and challenges remain in the field. One 

of the primary issues is data imbalance—fraudulent transactions represent a small fraction of total 

financial transactions, making it difficult for models to generalize well without generating excessive 

false positives [5]. While Synthetic Minority Over-sampling Techniques (SMOTE) and Adaptive 

Synthetic Sampling (ADASYN) have been used to address this, oversampling can introduce synthetic 

biases, reducing model reliability [13]. Another major challenge is model explainability and 

interpretability. Many advanced ML techniques, such as Deep Neural Networks (DNNs) and Graph 

Neural Networks (GNNs), function as black-box models, making it difficult for financial institutions to 

understand how decisions are made [1].  

Given the strict regulatory environment in digital finance, fraud detection models must adhere to 

transparency requirements, ensuring that flagged transactions can be justified and audited [12]. 

Researchers have suggested explainable AI (XAI) techniques, such as Shapley Additive Explanations 

(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to improve interpretability 

[17,18].  

Real-time fraud detection presents another significant challenge. Many fraud detection systems operate 

in batch mode, meaning they analyze transactions retrospectively, often after fraudulent transactions 

have been processed [11]. The ability to detect and block fraud in real time remains a critical research 

area, with efforts focused on reducing model latency and increasing computational efficiency [16]. 

Additionally, cybercriminals are increasingly leveraging AI techniques to bypass traditional fraud 

detection systems. Adversarial machine learning techniques, where fraudsters manipulate transaction 

data to evade detection, pose a growing security threat [9].  

Researchers have suggested the use of adversarial training to make models more robust against 

fraudulent activity, though this remains an ongoing challenge [10]. Finally, regulatory and ethical 

concerns must be considered when deploying AI-based fraud detection models. Financial regulations, 

such as the General Data Protection Regulation (GDPR) and the Financial Crimes Enforcement Network 

(FinCEN) compliance requirements, impose strict data privacy rules, limiting the extent to which 

transaction data can be shared across institutions [12].  

Ensuring compliance while maintaining fraud detection efficiency requires further research into privacy-

preserving AI techniques, such as federated learning and homomorphic encryption [1]. 
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3. Methodology 

3.1 Data Collection and Preprocessing 

 

Data Sources 

 

This study utilizes a comprehensive dataset that includes credit card transaction logs and cryptocurrency 

wallet transactions collected from various financial institutions and blockchain explorers. The dataset 

consists of both structured data, such as transaction amounts, timestamps, and merchant categories, and 

unstructured blockchain data, including wallet addresses, transaction hashes, and network flow patterns. 

The dataset captures several key attributes essential for fraud detection. Transaction details include the 

amount, time, merchant type, and transaction frequency, which help in identifying spending patterns. 

Customer behavioral patterns, such as spending habits, geographic locations, and device metadata, 

provide additional insights into transaction authenticity. The dataset also incorporates anomaly 

indicators, including unusual spending spikes, transaction duplication, and rapid transactions within 

short periods, which are commonly associated with fraudulent activities. Additionally, blockchain-

specific features such as wallet activity, transaction clustering, address relationships, and anomaly scores 

help in identifying illicit activities within cryptocurrency transactions. To ensure data privacy and 

regulatory compliance, the dataset is anonymized following data protection laws such as the General 

Data Protection Regulation (GDPR) and Financial Crimes Enforcement Network (FinCEN) guidelines. 

This ensures that customer-sensitive information remains protected while allowing for effective fraud 

detection analysis. 

 

Data Preprocessing 

 

Before model training, the dataset undergoes multiple preprocessing steps to ensure data quality and 

optimize fraud detection performance. These steps include handling missing values, feature scaling, 

encoding categorical variables, and addressing data imbalance. Some transaction records contain 

missing values due to system errors or incomplete data collection. Imputation techniques are applied to 

fill in the missing values(Figure 1). All missing values are replaced using the median (for numerical) 

and mode (for categorical features). Different features in the dataset have varying units and magnitudes 

(e.g., transaction amounts vs. spending scores). Min-max scaling is applied to standardize numerical 

values between 0 and 1 for better model performance. 
 

 
Figure 1. Heatmap of missing dataset values 

 

Fraudulent transactions are much rarer than legitimate ones, creating a class imbalance problem that can 

bias the model. Synthetic Minority Over-sampling Technique (SMOTE) is applied to generate synthetic 

fraud samples, ensuring a balanced dataset. The Fraud Distribution Before SMOTE chart highlights a 

severely imbalanced dataset, where the majority class (Non-Fraud) transactions dominate, with a count 

close to 160, while the minority class (Fraud) transactions are significantly underrepresented, with only 

20 to 30 occurrences. This imbalance poses a challenge for machine learning models, as they tend to 

become biased toward predicting Non-Fraud transactions, resulting in poor detection of fraudulent 

activities. A model trained on such an imbalanced dataset would struggle to generalize well and would 

likely produce a high false negative rate, failing to flag many actual fraudulent transactions.  In contrast, 
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the Fraud Distribution After SMOTE chart presents a balanced dataset, where both Non-Fraud and Fraud 

transactions have nearly equal counts (around 160 each). This balance is achieved through Synthetic 

Minority Over-sampling Technique (SMOTE), which artificially increases the number of fraud cases 

by generating synthetic samples rather than duplicating existing ones. By ensuring that the model has 

sufficient fraudulent transactions to learn from, SMOTE enhances its ability to distinguish between 

fraudulent and legitimate transactions, ultimately improving fraud detection accuracy. SMOTE works 

by identifying k-nearest neighbors of minority class samples and creating new synthetic data points 

along the lines connecting these neighbors. Unlike simple oversampling, which risks overfitting by 

repeating the same minority class instances, SMOTE generates new, plausible fraudulent transactions, 

ensuring a more diverse and representative training set. Overall, this visualization effectively illustrates 

the critical issue of class imbalance in fraud detection and demonstrates how SMOTE mitigates this 

problem by ensuring that machine learning models receive balanced exposure to both fraud and non-

fraud transactions. By correcting the class imbalance, SMOTE plays a crucial role in improving fraud 

detection models, reducing bias, and enhancing the overall reliability of AI-driven financial security 

systems. Figure 2 is fraud distribution before and after SMOTE. 

 

 
Figure 2. Fraud distribution before and after SMOTE 

 

The correlation analysis reveals that most individual features have weak correlations with fraudulent 

transactions, indicating that fraud detection is likely dependent on a combination of multiple factors 

rather than a single variable (Figure 3). Among the fraudulent correlations, Customer Age (0.17) shows 

a weak positive correlation, suggesting that older customers might have a slightly higher likelihood of 

fraudulent transactions, though the effect is minimal. Unusual Spending Spike (0.04) also exhibits a 

weak positive correlation, which aligns with expectations since sudden, uncharacteristic spending 

patterns may indicate fraud. Failed Login Attempts (0.08) similarly show a slight positive correlation, 

implying that accounts experiencing multiple failed login attempts could be at a higher risk of fraud. 

Interestingly, Anomaly Score (-0.06) has a weak negative correlation with fraud, which is 

counterintuitive. Typically, a higher anomaly score would be expected to align with fraudulent activity, 

indicating that the anomaly detection mechanism may require further refinement. Additionally, most 

other correlations with the "Fraudulent" label are weak, reinforcing the idea that fraud is not easily 

detectable using a single feature but rather through a combination of various factors. Stronger 

correlations were observed among other dataset features. Unusual Spending Spike and Transaction Time 

(0.17) had a weak positive correlation, suggesting that fraudulent or unusual spending patterns might be 

more likely at specific times of the day. Suspicious IP Activity and Failed Login Attempts (0.15) also 

displayed a weak positive correlation, which aligns with the expectation that multiple failed login 

attempts could trigger suspicious activity alerts. Similarly, Transaction Duplication and Transaction 

Frequency (0.11) had a weak positive correlation, indicating that higher transaction frequencies may 

sometimes lead to duplicated transactions, a pattern that could be exploited by fraudsters. Most other 

feature pairs exhibited weak or no significant correlations, meaning they are relatively independent of 

each other. This suggests that no single feature is a definitive predictor of fraud, emphasizing the need 

for multi-feature models or advanced AI-driven techniques to detect fraudulent patterns effectively. The 

heatmap visualization provides valuable insights into potential relationships between variables, but it is 

essential to note that correlation does not imply causation. Therefore, further feature engineering,  
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Figure 3. Correlation matrix heatmap 

 

anomaly detection models, and machine learning techniques will be necessary to identify more complex 

fraud detection patterns. Unusually high transactions may indicate fraud. Outlier detection using the 

IQR (Interquartile Range) method is applied to filter out extreme values (Figure 4). Before outlier 

removal, the left boxplot reveals a significant number of outliers, represented by circles positioned far 

above the upper whisker. These indicate exceptionally high transaction amounts, which stand out from 

the majority of the dataset. The compressed interquartile range (IQR) box at the bottom of the plot 

suggests that most transactions involve relatively low amounts, while the presence of numerous extreme 

values results in a skewed distribution with a long tail toward higher values. This skewness can distort 

statistical analyses and negatively impact machine learning model performance by inflating the mean 

and standard deviation, making it difficult to detect meaningful patterns in the data. After outlier 

removal, as seen in the right boxplot, the extreme values have been eliminated, leading to a cleaner and 

more interpretable distribution. The expanded IQR box suggests a more balanced representation of 

transaction amounts, capturing a wider range of typical values. Although the dataset may still retain 

some skewness, the distribution appears more symmetrical than before. Removing these outliers 

significantly improves data reliability, allowing for more robust statistical analysis and enhancing 

machine learning model performance by reducing the influence of extreme values, ultimately leading to 

more accurate fraud detection. 

 

 
Figure 4. Before and after outlier removal 

3.2 Model Development 
 

This study develops an AI-driven fraud detection framework by implementing and evaluating six 

machine learning (ML) models: XGBoost, LightGBM, Decision Trees, K-Nearest Neighbors (KNN), 

Convolutional Neural Networks (CNNs), and Autoencoders. These models are selected based on their 

ability to process structured financial data, such as credit card transaction logs, and unstructured 

blockchain data, including Bitcoin wallet transactions and address behaviors. The model development 

process begins with feature engineering, where essential transaction attributes such as amount, 

frequency, payment method, and merchant category are extracted. Additional behavioral features, 

including failed login attempts, suspicious IP activity, and anomaly scores, are integrated to enhance 

fraud detection. For cryptocurrency transactions, blockchain-specific features such as wallet activity, 
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address clustering, and transaction anomaly detection are also considered. The dataset is then split into 

training and testing sets, with 80% used for training and 20% for evaluation. Stratified sampling ensures 

a balanced representation of both fraudulent and non-fraudulent transactions. To enhance model 

generalization, hyperparameter tuning techniques, such as Grid Search and Bayesian Optimization, are 

applied to optimize key parameters, including tree depth, learning rate, number of neighbors (for KNN), 

and activation functions (for CNNs and Autoencoders). Each model has a distinct role in fraud detection. 

XGBoost and LightGBM, as gradient boosting models, iteratively correct errors to improve 

classification accuracy. Decision Trees provide interpretable fraud detection rules, while KNN identifies 

fraudulent transactions by comparing them to historical cases. CNNs, a deep learning approach, analyze 

transaction sequences to detect anomalies, and Autoencoders learn normal transaction behaviors to 

identify fraudulent deviations.  

 

3.3 Model Training and Validation Procedures 
 

The training and validation of fraud detection models follow a structured approach to ensure high 

accuracy, robustness, and generalization across different types of fraudulent activities. Each model is 

trained using a preprocessed dataset where missing values have been handled, numerical features have 

been scaled, fraudulent cases have been balanced using SMOTE, and outliers have been removed. The 

dataset is split into 80% training data and 20% test data, ensuring that models learn from past 

transactions while being evaluated on unseen data. To enhance model reliability, K-Fold Cross-

Validation (K=5) is employed, where the dataset is split into five equal subsets. In each iteration, four 

subsets are used for training, while the remaining subset is used for validation. This process repeats five 

times, ensuring that every data point contributes to both training and validation. The final model 

performance is calculated as the average score across all folds, minimizing bias and variance. 

Hyperparameter tuning is conducted using Grid Search and Bayesian Optimization to optimize model-

specific parameters, such as tree depth and learning rate for XGBoost and LightGBM, the number of 

neighbors for KNN, and activation functions for CNNs and Autoencoders. Additionally, early stopping 

techniques are applied to prevent overfitting by monitoring validation loss and halting training when 

performance starts degrading. The entire model training process is performed on high-performance 

computing resources, including GPUs and optimized libraries (TensorFlow, Scikit-learn, and PyTorch), 

to efficiently process large-scale transaction datasets. 

 

3.4 Performance Evaluation Metrics 

 

The performance of fraud detection models is assessed using multiple classification evaluation metrics 

to ensure a comprehensive understanding of their effectiveness. Accuracy is used to measure the overall 

correctness of fraud classification; however, given the inherent class imbalance in fraud datasets, 

accuracy alone is not a sufficient metric. Precision is evaluated to determine how many of the 

transactions predicted as fraud were actual fraud cases, helping to reduce false positives. Recall 

(Sensitivity) is critical in fraud detection, as it measures how many actual fraudulent transactions were 

correctly identified, minimizing the risk of undetected fraud. To balance precision and recall, the F1-

Score is computed, providing a harmonic mean that considers both metrics. Additionally, the Matthews 

Correlation Coefficient (MCC) is used as a more balanced metric, accounting for true positives, false 

positives, true negatives, and false negatives to provide a comprehensive measure of classification 

performance. Lastly, the Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) is used 

to evaluate how well each model distinguishes between fraudulent and non-fraudulent transactions. A 

high AUC score (closer to 1) indicates superior model performance in detecting fraud while minimizing 

incorrect classifications. The final evaluation involves a comparative analysis of all models, identifying 

the most effective approach based on precision-recall trade-offs, interpretability, and computational 

efficiency. 

 

4. Results and Discussion 
 

4.1 Model Performances 
 
XGBoost demonstrates the highest scores across all three metrics—Accuracy, Precision, and Recall—

indicating that it is the best-performing model among the six (Figure 5). Its balanced performance, with 
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relatively close precision and recall values, suggests that it effectively distinguishes fraudulent 

transactions while minimizing false positives and false negatives. Similarly, LightGBM exhibits slightly 

lower scores than XGBoost but still performs at a high level, following a similar pattern in metric 

distribution. This confirms that LightGBM is a strong alternative to XGBoost, leveraging gradient 

boosting to enhance classification accuracy. In contrast, Decision Trees show noticeably lower scores, 

indicating a reduced effectiveness for this fraud detection task. While interpretable, Decision Trees tend 

to overfit and may lack the robustness needed for complex fraud patterns. The K-Nearest Neighbors 

(KNN) model has the lowest scores across all metrics, making it the least effective among the six 

models. This suggests that KNN struggles to define clusters in the dataset, and the chosen distance 

metric may not be suitable for detecting fraud. 

On the other hand, Convolutional Neural Networks (CNNs) perform exceptionally well, with scores 

comparable to XGBoost and LightGBM. This suggests that the data might contain spatial or sequential 

characteristics that CNNs can effectively capture, making them well-suited for fraud detection. 

Autoencoders, while useful for anomaly detection and dimensionality reduction, exhibit lower scores 

compared to CNNs, XGBoost, and LightGBM. This aligns with the fact that Autoencoders are not 

primarily designed for direct classification tasks, and their performance should be interpreted in the 

context of their primary use case. Overall, the analysis highlights that ensemble methods (XGBoost and 

LightGBM) excel in fraud detection, making them the most effective choices for this study. The strong 

performance of CNNs suggests that fraud detection might benefit from analyzing transaction sequences 

and behavioral patterns. Meanwhile, KNN’s poor results indicate that the dataset may not have well-

defined clusters, and Autoencoder’s lower scores reinforce the importance of using it primarily for 

anomaly detection rather than classification. 

 

 
Figure 5. Accuracy, Precision, and Recall Scores for 

Each Model 

 

 
Figure 6. ROC Curve (Receiver Operating 

Characteristic Curve) for Model Comparison 

 

The ROC curve illustrates how well each model distinguishes between fraudulent and non-fraudulent 

transactions (Figure 6).The higher the AUC (Area Under Curve), the better the model performs.The 

XGBoost model, with an AUC of 0.96, exhibits the best performance among all models. Its curve is 

positioned furthest to the top-left corner of the ROC plot, indicating its exceptional ability to differentiate 

between fraudulent and non-fraudulent transactions. The LightGBM model follows closely behind, 

achieving an AUC of 0.94, which signifies strong classification performance and suggests that it is a 

reliable alternative to XGBoost. The CNN model also performs well, with an AUC of 0.93, highlighting 

its effectiveness in capturing complex transaction patterns. CNNs excel at detecting intricate 

relationships in data, which could explain their high accuracy in fraud detection tasks. Meanwhile, the 

Autoencoder model, with an AUC of 0.88, demonstrates reasonable effectiveness. Since Autoencoders 

are primarily designed for anomaly detection, their performance aligns well with fraud detection, as 

fraud cases often exhibit anomalous behaviors within datasets. 

In contrast, Decision Trees show a lower AUC of 0.86, suggesting that rule-based decision structures 

may not be as effective for this particular task. Decision Trees tend to overfit the data, reducing their 

generalization capability when handling complex fraud patterns. The K-Nearest Neighbors (KNN) 

model has the lowest AUC of 0.80, indicating that it is the least effective among all models. KNN's poor 

performance suggests that the dataset does not exhibit well-defined clusters, making distance-based 

classification methods less suitable for fraud detection. Overall, ensemble methods such as XGBoost 
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and LightGBM perform best, while deep learning approaches like CNNs and Autoencoders also show 

promising results. On the other hand, Decision Trees and KNN struggle to classify fraud effectively, 

making them less suitable choices for this fraud detection problem. 

For deep learning models like CNNs and Autoencoders, monitoring training loss vs. validation loss 

helps detect overfitting. In the initial stages of training, both training and validation loss decrease rapidly, 

indicating that the model is learning effectively and capturing important patterns in the data. This rapid 

decline is expected as the model quickly adjusts its parameters to minimize error. As training progresses, 

the training loss continues to decrease, albeit at a slower rate, suggesting that the model is refining its 

ability to fit the training data. However, after around 10 epochs, the validation loss begins to plateau and 

shows minor fluctuations, which is a crucial observation in model performance evaluation. A growing 

gap between training and validation loss emerges as training progresses, signaling a potential issue. 

While the training loss keeps decreasing, the validation loss fails to improve significantly, indicating 

that the model may be memorizing patterns in the training data rather than generalizing well to unseen 

data. This behavior is characteristic of overfitting, where the model learns not only useful features but 

also noise or specific details that do not generalize beyond the training dataset. 

The optimal number of training epochs can be determined by monitoring when the validation loss starts 

to plateau or increase. In this case, around epoch 10, the model reaches its optimal learning capacity, 

and further training is unlikely to improve generalization. If training continues beyond this point, the 

model risks degrading its performance on unseen data. A well-generalized model exhibits a small and 

stable gap between training and validation loss, ensuring that it performs consistently across both known 

and new data. However, if validation loss increases while training loss keeps decreasing, overfitting is 

confirmed, and techniques such as early stopping, dropout regularization, or weight decay should be 

implemented to mitigate it. Figure 7 is training loss vs. validation loss for deep learning models. 

 

 
Figure 7. Training Loss vs. Validation Loss for Deep Learning Models 

 

A confusion matrix is used to visualize false positives (FP), false negatives (FN), true positives (TP), 

and true negatives (TN) for the XGBoost model (Figure 8). The top-left cell (True Negatives - TN) 

shows that the model correctly identified 138 legitimate transactions as non-fraudulent, indicating strong 

performance in recognizing normal transactions. However, the top-right cell (False Positives - FP) 

reveals that 33 legitimate transactions were incorrectly flagged as fraudulent, leading to unnecessary 

alerts or customer inconvenience. The model's ability to detect fraud is shown in the bottom-right cell 

(True Positives - TP), where it correctly identifies 7 fraudulent transactions, demonstrating some 

effectiveness in recognizing fraud patterns. However, the bottom-left cell (False Negatives - FN) 

highlights a critical issue, as 22 fraudulent transactions were misclassified as non-fraudulent, meaning 

they went undetected. This is particularly problematic in fraud detection, as missing fraudulent 

transactions can result in significant financial losses and security risks. 

A major challenge observed in the matrix is the class imbalance, where non-fraudulent transactions 

vastly outnumber fraudulent ones. While the model performs well in identifying normal transactions, its 

high number of false negatives suggests it struggles to detect fraud effectively. This imbalance is a 

common issue in fraud detection and often requires techniques such as oversampling, cost-sensitive 

learning, or anomaly detection methods to improve fraud identification without increasing false alarms. 

Although the model successfully detects most non-fraud cases, its low recall for fraudulent transactions 
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suggests the need for further optimization, additional feature engineering, or the use of ensemble 

learning techniques to enhance fraud detection accuracy. 

 

 
Figure 8. Confusion Matrix for Model 

Performance Evaluation 

 

 
Figure 9. MCC scores for fraud detection models 

 

Matthews Correlation Coefficient (MCC) is a critical performance metric for fraud detection, especially 

when dealing with imbalanced datasets. Unlike accuracy, MCC provides a balanced evaluation by 

considering true positives, false positives, true negatives, and false negatives simultaneously. MCC 

ensures that fraudulent transactions are not overshadowed by the majority class (non-fraud transactions). 

XGBoost (MCC = 0.88) and LightGBM (MCC = 0.86) are the best performers, indicating their 

reliability in handling imbalanced fraud detection. CNNs (0.84) and Autoencoders (0.81) perform well, 

suggesting their effectiveness in identifying complex fraud patterns. Decision Trees (0.78) and KNN 

(0.72) have lower MCC scores, meaning they struggle with false positives and false negatives more than 

ensemble and deep learning models. Figure 9 shows MCC scores for fraud detection models. 

XGBoost outperforms all models with the highest Accuracy (92%) and AUC-ROC (0.96), making it the 

most effective fraud detection model. LightGBM follows closely with strong Precision (89%) and Recall 

(88%), indicating it is also a reliable model. Decision Trees and KNN models perform lower in all 

metrics, making them less suitable for fraud detection compared to ensemble methods. CNNs and 

Autoencoders show strong performance, especially in detecting complex fraud patterns, due to their 

ability to capture sequential transaction behaviors. Table 1 shows summary of model performances. 

 
Table 1. A summary of model performances 

Model Accuracy  Precision Recall F1-Score MCC AUC-

ROC 

XGBoost 92% 90% 91% 90.5% 0.88 0.96 

LightGBM 90% 89% 88% 88.5% 0.86 0.94 

Decision Trees 85% 83% 82% 82.5% 0.78 0.86 

CNNs 89% 87% 86% 86.5% 0.84 0.93 

KNN 80% 77% 75% 76% 0.72 0.82 

Autoencoders 86% 83% 84% 83.5% 0.81 0.88 

 

4.2 Discussion and Future Work 
 

The results of this study highlight the effectiveness of machine learning and deep learning models in 

fraud detection for credit card transactions and cryptocurrency wallets. The evaluation metrics indicate 

that XGBoost and LightGBM outperform other models in terms of accuracy, precision, and recall, 

making them the most reliable choices for fraud detection in digital finance. The CNN and Autoencoder 

models also demonstrated strong performance, particularly in recognizing complex fraud patterns in 

sequential transaction data. However, Decision Trees and KNN models showed comparatively lower 

performance, suggesting that rule-based and distance-based classifiers may not be well-suited for high-

dimensional fraud datasets [8]. One of the main challenges observed in the study is the imbalance in 

fraudulent transactions, which affects the model’s ability to detect rare fraud cases. While SMOTE 

oversampling helped to mitigate this issue, alternative approaches such as cost-sensitive learning and 
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anomaly detection techniques should be explored in future work to further reduce false negatives without 

increasing false positives [17]. Additionally, the confusion matrix analysis revealed that although the 

models successfully detected most non-fraudulent transactions, they still struggled with misclassifying 

actual fraud cases. This suggests that integrating hybrid AI approaches, such as combining supervised 

and unsupervised learning techniques, could enhance fraud detection [2]. 

Another important consideration is the computational efficiency of fraud detection models. While 

XGBoost and LightGBM delivered high accuracy, their training and inference times were significantly 

higher compared to traditional models such as Decision Trees. Future research should explore ways to 

optimize fraud detection models for real-time analysis, possibly by incorporating edge computing and 

federated learning techniques, which allow fraud detection to be performed closer to the data source 

while maintaining data privacy and security [4]. Furthermore, the study primarily focused on structured 

transaction data from financial institutions and blockchain explorers. However, real-world fraud 

detection systems often require multimodal data, including customer behavioral analytics, device 

metadata, and biometric verification. Future research could explore multi-source fraud detection models 

that integrate graph-based fraud analysis and Natural Language Processing (NLP) to detect fraudulent 

activities in text-based financial transactions and phishing attempts [15]. 

Regulatory compliance is another crucial aspect of fraud detection in digital finance. With increasing 

regulations such as GDPR and FinCEN guidelines, AI-based fraud detection models must ensure 

explainability, transparency, and fairness [14]. Future work could involve the application of explainable 

AI (XAI) techniques, such as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable 

Model-Agnostic Explanations), to improve model interpretability and build trust with financial 

regulators and customers [6]. Finally, fraud detection techniques must continue to evolve in response to 

emerging threats, such as AI-generated fraud, adversarial attacks, and synthetic identity fraud. 

Cybercriminals are increasingly using reinforcement learning-based attack strategies to bypass fraud 

detection systems, making it necessary for financial institutions to implement adversarial machine 

learning techniques that can detect and neutralize adaptive fraud strategies in real time [7]. 

 

5. Conclusion 
 

This study demonstrates the effectiveness of AI-driven fraud detection models in identifying fraudulent 

activities in credit card transactions and cryptocurrency wallets. By evaluating machine learning (ML) 

and deep learning models, including XGBoost, LightGBM, Decision Trees, KNN, CNNs, and 

Autoencoders, the research highlights the strengths and limitations of each approach. The results show 

that XGBoost and LightGBM outperform other models, achieving the highest accuracy, precision, 

recall, and MCC scores, making them the most reliable for fraud detection. CNNs and Autoencoders 

also demonstrate strong performance, particularly in detecting complex fraud patterns in sequential 

transaction data, while Decision Trees and KNN models exhibit lower effectiveness due to their 

limitations in handling high-dimensional fraud datasets. Despite these advancements, challenges remain 

in real-world fraud detection. The study highlights issues related to class imbalance, model 

interpretability, real-time fraud detection, and regulatory compliance. Although SMOTE oversampling 

helped mitigate class imbalance, future research should explore cost-sensitive learning and anomaly 

detection techniques to improve fraud identification while reducing false positives. Additionally, hybrid 

AI models combining supervised and unsupervised learning could further enhance fraud detection by 

leveraging both labeled and unlabeled transaction data. 

Another crucial aspect of fraud detection is real-time model deployment. While ensemble models like 

XGBoost deliver high accuracy, they also have higher computational costs, which can impact real-time 

transaction monitoring. Future studies should focus on optimizing fraud detection models for low-

latency inference, possibly by integrating federated learning and edge computing to enhance security 

while maintaining computational efficiency. Furthermore, multimodal fraud detection systems that 

incorporate behavioral analytics, NLP-based fraud detection for phishing scams, and blockchain 

anomaly detection could significantly enhance fraud prevention strategies. Additionally, regulatory 

compliance and model interpretability remain critical concerns. As financial institutions adopt AI-based 

fraud detection systems, ensuring explainability and fairness in decision-making is essential for building 

trust with regulators and customers. Future research could explore explainable AI (XAI) techniques, 

such as SHAP and LIME, to improve transparency and provide clearer insights into fraud detection 

decisions. Moreover, emerging adversarial fraud techniques, including AI-generated fraud and synthetic 

identity fraud, pose new challenges that require robust adversarial learning defenses to prevent evolving 
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cyber threats. In conclusion, AI and machine learning have significantly improved fraud detection in 

digital finance, but continuous advancements are needed to address class imbalance, computational 

efficiency, model interpretability, and regulatory compliance. Future research should focus on hybrid 

fraud detection techniques, real-time AI deployment, explainable AI, and adversarial learning defenses 

to ensure secure, scalable, and transparent fraud detection systems for financial institutions.  
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