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Abstract: Some of the critical components in industrial lifting operations are 

lifting lugs, elements traditionally designed with conservative approaches that 

prioritize safety over material efficiency, resulting in oversized designs. This study 

proposes an innovative methodological framework that employs Generative 

Artificial Intelligence (GAI) to optimize these components. The material used is 

AISI 304 steel, which is economical and widely available, with the goal of reducing 

mass without compromising structural strength. By utilizing finite element analysis 

(FEA) simulations in Autodesk Inventor and genetic algorithms in Autodesk 

Fusion 360, a comparison was made between a traditional design based on the DIN 

580 standard and optimized designs generated by the software. Three 

manufacturing methods were also considered: additive manufacturing, three-axis 

milling, and casting. The results demonstrated a mass reduction of up to 91% in 

the additive manufacturing scenario, along with improvements in the safety factor 

of up to 2.765 and a notable enhancement in stress distribution uniformity. Another 

significant finding was the decrease in maximum displacement under dynamic 

loading, from 0.0189 mm (standard-based design) to 0.004 mm (generatively 

optimized design), which indicates increased stiffness. This methodology not only 

overcomes the limitations of conventional approaches but also offers flexibility to 

adapt to various production processes, with both economic (20% savings in 

material per unit) and environmental (reduced carbon footprint) benefits. The study 

validates the potential of GAI to optimize simple components using readily 

accessible materials, offering a replicable framework for sectors such as renewable 

energy and electric automotive applications. Future research should include 

experimental validations and fatigue studies to further consolidate these advances 

in real industrial environments. 

 

1. Introduction 

 
Lifting lugs are among the most essential components in structural mechanical engineering and in 

logistics and cargo transport applications. These elements are primarily designed to withstand critical 

loads in lifting and transport operations. Their uses are varied, such as in bridge construction, wind 

turbine installation, port container handling, and the assembly of aeronautical structures. In the 

automotive and aerospace sectors, lifting lugs have been designed to achieve a balance in structures 

between being lighter and improving strength and stiffness through the use of new composite materials. 

In the naval industry, they are key to the safe transportation of large heavy structural blocks; for this, 

welding and cutting techniques are used for their installation and removal [2]. Research on material 

efficiency in the design of structural elements has revealed that traditional approaches, which follow 

standardized codes such as DIN 580 and ASME BTH-1, tend to prioritize strength over material 

efficiency. This often results in oversized designs and high steel consumption. However, emerging 

methodologies aim to optimize material use and reduce unnecessary consumption [3]. In a global context 

where sustainability and the reduction of operational costs are priorities, optimizing these components 

without compromising their structural integrity has become an urgent challenge for the industry [4].  
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In particular, emerging sectors such as heavy-duty drone manufacturing and electric vehicles demand 

lighter components to maximize energy efficiency [5]. However, traditional design methods that rely on 

physical testing and manual iterations are time-consuming, costly, and not very adaptable to new 

required specifications. This makes it necessary to adopt new methodologies and innovative tools, such 

as generative artificial intelligence (GAI), to redesign structural components with a balanced approach 

between weight, strength, and manufacturability [6]. Although topological optimization has proven 

successful in complex components (e.g., engine connecting rods, aeronautical frames) [7]. Its 

application to simple elements such as lifting lugs has been scarcely explored. Recent studies have 

applied genetic algorithms to optimize crane hooks, achieving a 28% weight reduction, but limiting the 

solution to high-cost titanium alloys, which are not viable for large-scale industrial applications [8]. On 

the other hand, GAI has been used in structural supports for aircraft, although without addressing critical 

dynamic loads in real logistical environments [9]. This gap widens when considering common materials 

such as AISI 304 steel, widely used for its cost-to-strength ratio but often overlooked in advanced 

optimization studies [10]. Moreover, most research focuses on high-cost specialized software (e.g., 

Altair OptiStruct), limiting its adoption by small and medium-sized enterprises (SMEs) and in 

developing countries [11]. This presents an opportunity to explore accessible tools such as Autodesk 

Fusion 360, which integrates GAI modules with finite element analysis (FEA) simulations in an 

accessible and scalable environment.  

This study proposes a methodology to optimize lifting lugs using generative AI, comparing their 

performance with traditional designs based on standards. The innovation lies in three key aspects: 

1. Specific application: Focus on a component that is underestimated in the literature but critical 

in industrial operations. 

2. Low-cost material: Use of AISI 304 steel, relevant for mass manufacturing contexts. 

3. Dual validation: Computational analysis (static and dynamic) and efficiency metrics (N/kg) to 

quantify improvements. 

The main objective is to demonstrate that GAI can reduce the weight of lifting lugs by at least 30% 

while maintaining their maximum load capacity, surpassing the limitations of traditional methods.  

 

The study follows a four-stage workflow: 

1. Traditional design: 3D modeling in Autodesk Inventor according to the DIN 580 standard, with 

static loads (10 tons) and dynamic loads (±15% vibration). 

2. Optimization with GAI: Configuration of geometric constraints and mass objectives in 

Autodesk Fusion 360, using genetic algorithms to explore non-intuitive solutions. 

3. FEA simulation: Validation of stresses (Von Mises) and safety factor in both designs. 

4. Comparative analysis: Evaluation of efficiency (N/kg) and manufacturing feasibility. 

By integrating traditional and modern design tools, this study offers a replicable framework for 

optimizing structural components across various sectors, from renewable energy to electric mobility 

 

2. Materials and Methods 

 
2.1 Izaje Traditional Lifting Lug Design 

 

Main text should be times New Roman, 11pt and single-spaced. The traditional lifting lug design was 

based on the DIN 580 standard, internationally used for lifting components. Key dimensions included 

(Figure 1 and figure 2). 

 
Figure 1. Lifting Lug Dimensions Measured in (mm). 
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Material and Mechanical Properties 

AISI 304 stainless steel was selected for its balance between cost, corrosion resistance, and industrial 

availability. The mechanical properties considered were [12]: 

Elastic Modulus (𝐸): 200 GPa. 

Elastic Limit (𝜎𝑦): 205 MPa. 

Density (𝜌): 8000 kg/m³. 

Poisson's Ratio (𝜈): 0.29. 

Load Conditions and Constraints 

Static Load:  

Tensile force of 10 tons (98.1 kN), simulating the lifting of a maximum load under ideal conditions. 

Determination of the Load as a Distributed Pressure 

 

Figure 2. Distributed Load on the Lifting Lug 

Initial Data 

Applied Force: 𝐹 = 98.1 𝑘𝑁 

Hole Diameter: 𝑑ℎ = 50 𝑚𝑚 = 50 × 10−3 𝑚 

Diameter of the Shaft in Contact: 𝑑𝑒 = 42.93 𝑚𝑚 = 42.93 × 10−3 𝑚 

Support Width: 𝑏 = 20 𝑚𝑚 = 20 × 10−3𝑚 

Contact Angle Calculation 

The contact angle is calculated using the following equation: 

𝜃 = 2𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑑ℎ−𝑑𝑒

𝑑ℎ
)        (1) 

Substituting the values: 

𝜃 = 163.740 

Contact Arc Length Calculation 

The contact arc length is: 

𝐿 =
𝜃

3600 × 𝜋𝑑𝑒           (2) 

Substituting the values: 

𝐿 =
163.740

3600
× 𝜋 × 0.04293 

𝐿 = 61.34 𝑚𝑚 
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Contact Area Calculation 

𝐴 = 𝐿 × 𝑏 

𝐴 = 1226.8 𝑚𝑚2 

Pressure Calculation 

The pressure is calculated as: 

𝑃 =
𝐹

𝐴
                       (3) 

𝑷 = 𝟕𝟗. 𝟗𝟔 𝑴𝑷𝒂 

Dynamic Load: Sinusoidal vibration with an amplitude of 15% of the static load (14.7 kN) and a 

frequency of 5 Hz, replicating operational conditions in industrial environments. 

Motion Constraints: Lower end fixed (clamped condition), simulating attachment to a rigid structure. 
Figure 3 is the definition of loads and constraints. 

 

Figure 3. Definition of Loads and Constraints 

 

2.2 Finite Element Analysis (FEA) Simulation 

 

The structural analysis was performed in Autodesk Inventor, following these steps: 

Meshing: A high-resolution tetrahedral mesh was generated (element size = 2 mm), with local 

refinement in critical areas (figure 3 and 4). Material Configuration: AISI 304 properties assigned to 

the model (figure 5 and 6). 

 

Figure 4. Mesh Configuration by Zones 
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Figure 5. Definition of the Material Under Study 

Application of Loads and Constraints: 

Dynamic load defined by a sinusoidal function in the temporal analysis module. 

Evaluated Parameters: 

Von Mises Stress 𝜎𝑚𝑎𝑥. 

Safety Factor 𝐹𝑆 =
𝜎𝑦

𝜎𝑚𝑎𝑥
. 

Plastic Deformation 𝜖𝑝𝑙á𝑠𝑡𝑖𝑐𝑎. 

 

2.3 Generative AI Optimization in Autodesk Fusion 360 

 

The optimization process was divided into three zones.Preservation Zone: Mounting hole (∅50 mm) and 

contact area for the load (100×20 mm). Optimization Zone: The rest of the geometry, allowing the 

algorithm to explore unconventional shapes. 

 
Figure 6. Area of the original design that remains 
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Manufacturing Conditions: Restrictions for subtractive methods (CNC milling) and additive methods 

(DMLS). The Generative Design module of Fusion 360 used an evolutionary algorithm with the 

following configurations (figure 7 and 8). Objective: Minimize mass while maintaining 𝜎𝑚𝑎𝑥 <
250 𝑀𝑃𝑎. 

 

Figure 7. Types of Manufacturing 

 

 

Figure 8. Objective of the Generative Study 

 

Figure 9. Generative AI Models 
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Initial Population: 50 designs per generation. Convergence Criterion: Less than 1% improvement in 

efficiency over 10 consecutive iterations (figure 9 and 10). 

3. Results and Discussions 

Table 1 is simulation result of the traditional model and table 2 is additive manufacturing simulation 

result. On the other hand table 3 shows 3-Axis milling simulation result and table 4 is casting simulation 

result. 

3.1 Traditional Model 

 

Figure 10. Von Mises Stress and Safety Factor 

Table 1. Simulation Result of the Traditional Model 

Property Value 

Volume 874889 mm³ 

Mass 6.99911 kg 

Von Mises Stress 151.49 MPa 

First Principal Stress 95.1132 MPa 

Third Principal Stress 0.382029 MPa 

Displacement 0.018877 mm 

Safety Factor 1.41 - 15 su 

Displacement X 0.000222489 mm 

Displacement Y 0.0188685 mm 

Displacement Z 0.0148165 mm 

Equivalent Strain 0.000668307 su 

First Principal Strain 0.000065508 su 

Third Principal Strain -0.0000222043 su 

 

3.2 Results of the Generative AI Model 

 
Figure 11. Von Mises Stress Result for Additive Manufacturing 
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Table 2. Additive Manufacturing Simulation Result 

Property Value 

Status Convergence 

Generative Model Generative Model 1 

Material Steel AISI 304 Stainless Steel 

Manufacturing Method Additive 

Visual Similarity Group 5 

Volume (mm³) 71,981.451 

Mass (kg) 0.576 

Maximum von Mises Stress 

(MPa) 

103.092 

Safety Factor Limit 2 

Minimum Safety Factor 2.086 

Maximum Global 

Displacement. (mm) 

0.004 

 

 

Figure 12. Von Mises Stress Result for 3-Axis Milling 

Table 3. 3-Axis Milling Simulation Result 

Property Value 

Status Convergence 

Generative Model Generative Model 2 

Material Steel AISI 304 Stainless 

Steel 

Manufacturing Method 3-Axis Milling 

Visual Similarity Group 1 

Volume (mm³) 332,866.33 

Mass (kg) 2.663 
 

Maximum von Mises Stress 

(MPa) 

82.598 

Safety Factor Limit 2 

Minimum Safety Factor 2.603 

Maximum Global 

Displacement. (mm) 

0.004 

 

  

Figure 13. Von Mises Stress Result for Casting 
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Table 4. Casting Simulation Result 

Property Value 

Status Convergence 

Generative Model Generative Model 3 

Material Steel AISI 304 Stainless 

Steel 

Manufacturing Method Casting 

Visual Similarity Group 3 

Volume (mm³) 567,359.067 
 

Mass (kg) 4.539 
 

Maximum von Mises Stress 

(MPa) 

77.769 

Safety Factor Limit 2 

Minimum Safety Factor 2.765 

Maximum Global 

Displacement. (mm) 

0.004 

 

3.3 Mass Reduction and Structural Efficiency Analysis 

Generative optimization shows significant mass reductions compared to the traditional design: 

Absolute and Percentage Reduction: 

With additive manufacturing, mass is reduced by approximately 91% compared to the traditional mass 

(from ~7 kg to 0.576 kg). 

In the models manufactured through milling and casting, the reductions are 62% and 35%, respectively. 

These results indicate that the application of generative AI allows for the exploration of non-intuitive 

geometric configurations, achieving much more efficient designs in terms of load-to-mass ratio (N/kg). 

Stress Distribution and Safety Factors 

Stress Reduction: 

The maximum stress (Von Mises) is reduced in all optimized models (from 151.49 MPa in the traditional 

design to values between 77.77 and 103.09 MPa). This suggests a better stress distribution throughout 

the optimized geometry, which contributes to the durability of the component 

Improvement in the Safety Factor: 

While the traditional design shows a marginal safety factor (around 1.41), the optimized models exhibit 

safety factors above 2, with the casting model reaching 2.765. This means that, in addition to reducing 

mass, the optimized design increases robustness against dynamic loads and possible variations in the 

application of force. 

Behavior Under Dynamic Loads and Displacements 

The finite element analysis (FEA) shows significant differences in the response to the loads: 

Displacement: 

The traditional design shows a maximum displacement of 0.0189 mm, while in the optimized models it 

is drastically reduced to 0.004 mm. This lower displacement indicates that the optimized design is not 

only lighter but also more rigid, which is critical in lifting applications involving vibrations and dynamic 

loads. 

3.4 Considerations Based on the Manufacturing Method 

Each manufacturing method influences the final outcome of the optimized design:  

Additive: It allows for the greatest mass reduction, although the residual stress is slightly higher 

compared to the other methods. It emerges as an attractive option when extreme weight reduction is the 

main priority. They aim to offer a balance between mass reduction and adequate stress distribution. In 

the case of the casting manufacturing method, a lower Von Mises stress value and a high safety factor 

are obtained. This is especially important in applications where stability and structural integrity are a 

priority. The results obtained show that applying generative artificial intelligence models to the design 
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of lifting lugs allows for overcoming limitations and simplifications made by traditional standards-based 

models, which may either overdimension or overlook certain aspects that are critical in the design. This 

outcome establishes a new paradigm in the optimization of simple structural components.  

The following section contextualizes these findings in relation to existing literature, analyzes their 

practical implications, and discusses the limitations of the study. 

3.5 Comparison with Previous Studies 

A significant achievement was the 91% reduction in mass, as a result of the additive manufacturing 

process. These results significantly surpass those obtained in similar studies [13]. Other research studies 

have achieved a 28% reduction in the material used to manufacture crane hooks, which utilize titanium 

alloys—materials with high costs and therefore limited industrial applicability. In contrast, this study 

has employed AISI 304 steel, which is widely available and low-cost, enhancing the advantage of using 

generative AI models to optimize and democratize their use in mass manufacturing [14]. On the other 

hand, aeronautical supports were optimized using AI-driven generative design, but dynamic loads were 

not considered—an essential aspect addressed in this study through sinusoidal vibrations (±15% of the 

static load). 

3.6 Practical Implications of Manufacturing Methods 

The costs of optimized designs depend on the type of manufacturing methodology used: In additive 

manufacturing, which offers greater mass reduction resulting in the use of less material it is also 

necessary to evaluate the costs associated with its implementation, as it requires the use of metal 3D 

printing equipment and post-processing. Without a doubt, this method stands out and is ideal for 

practical applications involving high added value, such as cargo drones or aerospace components, where 

weight is a critical factor 

Milling and casting: Both options offer a balance between mass reduction and stress distribution. In 

terms of mass, they show reductions of 62% and 35%, respectively. This factor would be important to 

consider, especially in small and medium-sized industries, such as construction or shipping ports, where 

structural robustness and low unit cost are necessary to ensure economic returns and safety.   

3.7 Study Limitations 

While finite element analysis (FEA) validates the structural performance of the designs, there are key 

limitations: 

The first is the idealization of loads that is, static and dynamic loading conditions are assumed in a 

controlled operational environment. In other words, factors such as corrosion and lateral impacts are not 

considered. Fatigue is another aspect that affects the lifespan of components subjected to repetitive load 

cycles, which was not addressed in this study. Software dependency, as the results are tied to the 

capabilities of Autodesk, which could be a limitation when attempting to generalize the methodology to 

other platforms. The aforementioned limitations open new opportunities for future research, such as 

integrating specialized fatigue analysis software that incorporates standardized codes in their libraries, 

like ISO 12100. 

3.8 Projection Toward Emerging Applications 

Renewable energy: Lighter and stronger lifting lugs can reduce installation and maintenance costs of 

wind turbines. Electric mobility: Mass reduction helps maximize the range of electric vehicles and 

heavy-lift drones by lightening structures without compromising safety. 

Circular economy: Lower material consumption (20% savings per unit) aligns the design with 

sustainability principles, reducing the carbon footprint associated with steel production (figure 10-13). 

Generative Artificial Intelligence has been well studied and reported [15-21]. 

 

4. Conclusions 
 

This study has demonstrated that the application of generative artificial intelligence (GAI) in the design 

of lifting lugs allows for significant optimization compared to traditional methods based on standards 

such as DIN 580. The optimization applied to the initial model through GAI resulted in a substantial 

mass reduction of up to 91% using the additive method, without compromising structural integrity. In 
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fact, the optimized design outperformed the original in terms of Von Mises stress (lower values than the 

initial model) and showed an increase in the safety factor. All the optimized models displayed a 

homogeneous stress distribution, which also led to a notable reduction in maximum displacements from 

0.0189 mm in the traditional design to 0.004 mm in the optimized ones. The meaning of these values is 

simple and clear: lower displacement translates to more predictable and safer behavior under dynamic 

loads, which is crucial for industrial applications involving high mechanical demands. Reducing the 

amount of material used implies significant cost savings, especially in large-scale applications. This 

reduction contributes to broader goals such as minimizing the consumption of raw materials and the 

carbon footprint associated with steel extraction and processing, promoting a sustainable approach to 

structural engineering. Despite these promising results, the study has its limitations inherent to finite 

element simulations and the assumed operational conditions. It is therefore recommended to carry out 

industrial-scale experimental validation of the generative models, which would provide reliable data on 

durability and support the scalability and broader application of GAI benefits. 

In conclusion, the integration of traditional design tools with generative artificial intelligence opens new 

perspectives for the optimization of mechanical components, offering a viable solution that enhances 

both structural efficiency and economic and environmental sustainability. These findings represent a 

significant advancement in the field of mechanical design and provide a solid foundation for future 

research in structural optimization using GAI techniques. 
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