nternational ournal of pplied

ciences and diation esearc
ISSN: 3062-2751 wWiaswwiljasrancom asrar@Ggmall.com|

Vol. 2-No.1 (2025) pp. 56-67
Research Article

Use of Generative Artificial Intelligence to Optimize Lifting Lugs: Weight
Reduction and Sustainability in AISI 304 Steel

Robinson Garcial*, Carlos Garzon?, Juan Estrella’

tUniversidad 132nternacional de Investigacién México, Postgraduate Program, 72227, Puebla, Mexico
* Corresponding Author Email: robinson.garcia@uiimex.edu.mx - ORCID: 0009-0005-0929-3844

2Universidad Internacional de Investigaciéon México, Postgraduate Program, 72227, Puebla, Mexico
Email: carlosmiguelaries1974@gmail.com - ORCID: 0009-0005-1414-5547

SUniversidad de las Fuerzas Armadas-ESPE, Postgraduate Program, 171103, Quito, Ecuador
Email: jcestrellal@espe.edu.ec - ORCID: 0000-0003-2550-8938

ali bl Abstract: Some of the critical components in industrial lifting operations are

DOI: 10.22399/ijasrar.22 lifting lugs, elements traditionally designed with conservative approaches that
Received: Feb. 14. 2025 prioritize safety over material efficiency, resulting in oversized designs. This study
Accepted: Apr. 12, 2025 proposes an innovative methodological framework that employs Generative

Artificial Intelligence (GAI) to optimize these components. The material used is
AISI 304 steel, which is economical and widely available, with the goal of reducing

Keywords: mass without compromising structural strength. By utilizing finite element analysis

" (FEA) simulations in Autodesk Inventor and genetic algorithms in Autodesk
(I_Bglgr%tlil\j/%SA rificial Fusion 360, a comparison was made between a traditional design based on the DIN
Intelligence 580 standard and optimized designs generated by the software. Three
AISI 304 stéel, manufacturing methods were also considered: additive manufacturing, three-axis
Finite element analysis. milling, and casting. The results demonstrated a mass reduction of up to 91% in

the additive manufacturing scenario, along with improvements in the safety factor
of up to 2.765 and a notable enhancement in stress distribution uniformity. Another
significant finding was the decrease in maximum displacement under dynamic
loading, from 0.0189 mm (standard-based design) to 0.004 mm (generatively
optimized design), which indicates increased stiffness. This methodology not only
overcomes the limitations of conventional approaches but also offers flexibility to
adapt to various production processes, with both economic (20% savings in
material per unit) and environmental (reduced carbon footprint) benefits. The study
validates the potential of GAI to optimize simple components using readily
accessible materials, offering a replicable framework for sectors such as renewable
energy and electric automotive applications. Future research should include
experimental validations and fatigue studies to further consolidate these advances
in real industrial environments.

1. Introduction

Lifting lugs are among the most essential components in structural mechanical engineering and in
logistics and cargo transport applications. These elements are primarily designed to withstand critical
loads in lifting and transport operations. Their uses are varied, such as in bridge construction, wind
turbine installation, port container handling, and the assembly of aeronautical structures. In the
automotive and aerospace sectors, lifting lugs have been designed to achieve a balance in structures
between being lighter and improving strength and stiffness through the use of new composite materials.
In the naval industry, they are key to the safe transportation of large heavy structural blocks; for this,
welding and cutting techniques are used for their installation and removal [2]. Research on material
efficiency in the design of structural elements has revealed that traditional approaches, which follow
standardized codes such as DIN 580 and ASME BTH-1, tend to prioritize strength over material
efficiency. This often results in oversized designs and high steel consumption. However, emerging
methodologies aim to optimize material use and reduce unnecessary consumption [3]. In a global context
where sustainability and the reduction of operational costs are priorities, optimizing these components
without compromising their structural integrity has become an urgent challenge for the industry [4].
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In particular, emerging sectors such as heavy-duty drone manufacturing and electric vehicles demand
lighter components to maximize energy efficiency [5]. However, traditional design methods that rely on
physical testing and manual iterations are time-consuming, costly, and not very adaptable to new
required specifications. This makes it necessary to adopt new methodologies and innovative tools, such
as generative artificial intelligence (GAI), to redesign structural components with a balanced approach
between weight, strength, and manufacturability [6]. Although topological optimization has proven
successful in complex components (e.g., engine connecting rods, aeronautical frames) [7]. Its
application to simple elements such as lifting lugs has been scarcely explored. Recent studies have
applied genetic algorithms to optimize crane hooks, achieving a 28% weight reduction, but limiting the
solution to high-cost titanium alloys, which are not viable for large-scale industrial applications [8]. On
the other hand, GAI has been used in structural supports for aircraft, although without addressing critical
dynamic loads in real logistical environments [9]. This gap widens when considering common materials
such as AISI 304 steel, widely used for its cost-to-strength ratio but often overlooked in advanced
optimization studies [10]. Moreover, most research focuses on high-cost specialized software (e.g.,
Altair OptiStruct), limiting its adoption by small and medium-sized enterprises (SMEs) and in
developing countries [11]. This presents an opportunity to explore accessible tools such as Autodesk
Fusion 360, which integrates GAI modules with finite element analysis (FEA) simulations in an
accessible and scalable environment.
This study proposes a methodology to optimize lifting lugs using generative Al, comparing their
performance with traditional designs based on standards. The innovation lies in three key aspects:

1. Specific application: Focus on a component that is underestimated in the literature but critical

in industrial operations.
2. Low-cost material: Use of AISI 304 steel, relevant for mass manufacturing contexts.
3. Dual validation: Computational analysis (static and dynamic) and efficiency metrics (N/kg) to
quantify improvements.

The main objective is to demonstrate that GAI can reduce the weight of lifting lugs by at least 30%
while maintaining their maximum load capacity, surpassing the limitations of traditional methods.

The study follows a four-stage workflow:
1. Traditional design: 3D modeling in Autodesk Inventor according to the DIN 580 standard, with
static loads (10 tons) and dynamic loads (£15% vibration).
2. Optimization with GAI: Configuration of geometric constraints and mass objectives in
Autodesk Fusion 360, using genetic algorithms to explore non-intuitive solutions.
3. FEA simulation: Validation of stresses (Von Mises) and safety factor in both designs.
4. Comparative analysis: Evaluation of efficiency (N/kg) and manufacturing feasibility.
By integrating traditional and modern design tools, this study offers a replicable framework for
optimizing structural components across various sectors, from renewable energy to electric mobility

2. Materials and Methods
2.1 lzaje Traditional Lifting Lug Design
Main text should be times New Roman, 11pt and single-spaced. The traditional lifting lug design was

based on the DIN 580 standard, internationally used for lifting components. Key dimensions included
(Figure 1 and figure 2).
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Figure 1. Lifting Lug Dimensions Measured in (mm).
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Material and Mechanical Properties

AISI 304 stainless steel was selected for its balance between cost, corrosion resistance, and industrial
availability. The mechanical properties considered were [12]:

Elastic Modulus (E): 200 GPa.

Elastic Limit (g,,): 205 MPa.

Density (p): 8000 kg/m?.

Poisson's Ratio (v): 0.29.

Load Conditions and Constraints

Static Load:

Tensile force of 10 tons (98.1 kN), simulating the lifting of a maximum load under ideal conditions.

Determination of the Load as a Distributed Pressure

Figure 2. Distributed Load on the Lifting Lug
Initial Data
Applied Force: F = 98.1 kN
Hole Diameter: d,, = 50 mm = 50 X 1073 m
Diameter of the Shaft in Contact: d, = 42.93 mm = 4293 X 1073 m
Support Width: b = 20 mm = 20 x 10™3m
Contact Angle Calculation
The contact angle is calculated using the following equation:

6 = 2arccos (dhd—_hde) (1)

Substituting the values:

6 = 163.74°

Contact Arc Length Calculation
The contact arc length is:

L =—"xmd, @)
Substituting the values:

163.74°
= 3600 X 1 X 0.04293
L =6134mm
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Contact Area Calculation

A=LXDb
A = 1226.8 mm?

Pressure Calculation

The pressure is calculated as:
L
A

P =

®)

P =79.96 MPa

Dynamic Load: Sinusoidal vibration with an amplitude of 15% of the static load (14.7 kN) and a
frequency of 5 Hz, replicating operational conditions in industrial environments.

Motion Constraints: Lower end fixed (clamped condition), simulating attachment to a rigid structure.

Figure 3 is the definition of loads and constraints.
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Figure 3. Definition of Loads and Constraints

2.2 Finite Element Analysis (FEA) Simulation

The structural analysis was performed in Autodesk Inventor, following these steps:

Meshing: A high-resolution tetrahedral mesh was

generated (element size = 2 mm), with local

refinement in critical areas (figure 3 and 4). Material Configuration: AISI 304 properties assigned to

the model (figure 5 and 6).

Figure 4. Mesh Configuration by Zones
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Figure 5. Definition of the Material Under Study
Application of Loads and Constraints:
Dynamic load defined by a sinusoidal function in the temporal analysis module.
Evaluated Parameters:

Von Mises Stress o,,qx-

Safety Factor FS = —2.

Omax

Plastic Deformation €ps5¢icq-
2.3 Generative Al Optimization in Autodesk Fusion 360
The optimization process was divided into three zones.Preservation Zone: Mounting hole (#50 mm) and

contact area for the load (100x20 mm). Optimization Zone: The rest of the geometry, allowing the
algorithm to explore unconventional shapes.
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Figure 6. Area of the original design that remains
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Manufacturing Conditions: Restrictions for subtractive methods (CNC milling) and additive methods
(DMLS). The Generative Design module of Fusion 360 used an evolutionary algorithm with the
following configurations (figure 7 and 8). Objective: Minimize mass while maintaining og,,q4, <
250 MPa.
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Figure 7. Types of Manufacturing
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Figure 8. Objective of the Generative Study
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Figure 9. Generative Al Models
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Initial Population: 50 designs per generation. Convergence Criterion: Less than 1% improvement in
efficiency over 10 consecutive iterations (figure 9 and 10).

3. Results and Discussions

Table 1 is simulation result of the traditional model and table 2 is additive manufacturing simulation
result. On the other hand table 3 shows 3-Axis milling simulation result and table 4 is casting simulation
result.

3.1 Traditional Model
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Figure 10. Von Mises Stress and Safety Factor
Table 1. Simulation Result of the Traditional Model

Property Value

Volume 874889 mm?
Mass 6.99911 kg

Von Mises Stress 151.49 MPa
First Principal Stress 95.1132 MPa
Third Principal Stress 0.382029 MPa
Displacement 0.018877 mm
Safety Factor 1.41-15su
Displacement X 0.000222489 mm
Displacement Y 0.0188685 mm
Displacement Z 0.0148165 mm
Equivalent Strain 0.000668307 su
First Principal Strain 0.000065508 su
Third Principal Strain -0.0000222043 su

3.2 Results of the Generative Al Model

Referancia de ten
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Table 2. Additive Manufacturing Simulation Result

Property

Value

Status

Convergence

Generative Model

Generative Model 1

Material Steel

AISI 304 Stainless Steel

Manufacturing Method Additive
Visual Similarity Group 5
Volume (mm?3) 71,981.451

Mass (kg) 0.576

Maximum von Mises Stress 103.092
(MPa)
Safety Factor Limit 2
Minimum Safety Factor 2.086
Maximum Global 0.004

Displacement. (mm)

Grteryress 9% tvrver|

Figure 12. Von Mises Stress Result for 3-Axis Milling

Table 3. 3-Axis Milling Simulation Result

Property Value
Status Convergence
Generative Model Generative Model 2
Material Steel AISI 304 Stainless
Steel
Manufacturing Method 3-Axis Milling
Visual Similarity Group 1
Volume (mm?) 332,866.33
Mass (kg) 2.663
Maximum von Mises Stress 82.598
(MPa)
Safety Factor Limit 2
Minimum Safety Factor 2.603
Maximum Global 0.004
Displacement. (mm)

Figure 13. Von Mises Stress Result for Casting
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Table 4. Casting Simulation Result

Property Value
Status Convergence
Generative Model Generative Model 3
Material Steel AISI 304 Stainless
Steel
Manufacturing Method Casting
Visual Similarity Group 3
Volume (mm?) 567,359.067
Mass (kg) 4.539
Maximum von Mises Stress 77.769
(MPa)
Safety Factor Limit 2
Minimum Safety Factor 2.765
Maximum Global 0.004
Displacement. (mm)

3.3 Mass Reduction and Structural Efficiency Analysis

Generative optimization shows significant mass reductions compared to the traditional design:
Absolute and Percentage Reduction:

With additive manufacturing, mass is reduced by approximately 91% compared to the traditional mass
(from ~7 kg to 0.576 kg).

In the models manufactured through milling and casting, the reductions are 62% and 35%, respectively.

These results indicate that the application of generative Al allows for the exploration of non-intuitive
geometric configurations, achieving much more efficient designs in terms of load-to-mass ratio (N/kg).

Stress Distribution and Safety Factors
Stress Reduction:

The maximum stress (Von Mises) is reduced in all optimized models (from 151.49 MPa in the traditional
design to values between 77.77 and 103.09 MPa). This suggests a better stress distribution throughout
the optimized geometry, which contributes to the durability of the component

Improvement in the Safety Factor:

While the traditional design shows a marginal safety factor (around 1.41), the optimized models exhibit
safety factors above 2, with the casting model reaching 2.765. This means that, in addition to reducing
mass, the optimized design increases robustness against dynamic loads and possible variations in the
application of force.

Behavior Under Dynamic Loads and Displacements
The finite element analysis (FEA) shows significant differences in the response to the loads:

Displacement:

The traditional design shows a maximum displacement of 0.0189 mm, while in the optimized models it
is drastically reduced to 0.004 mm. This lower displacement indicates that the optimized design is not
only lighter but also more rigid, which is critical in lifting applications involving vibrations and dynamic
loads.

3.4 Considerations Based on the Manufacturing Method
Each manufacturing method influences the final outcome of the optimized design:

Additive: It allows for the greatest mass reduction, although the residual stress is slightly higher
compared to the other methods. It emerges as an attractive option when extreme weight reduction is the
main priority. They aim to offer a balance between mass reduction and adequate stress distribution. In
the case of the casting manufacturing method, a lower Von Mises stress value and a high safety factor
are obtained. This is especially important in applications where stability and structural integrity are a
priority. The results obtained show that applying generative artificial intelligence models to the design
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of lifting lugs allows for overcoming limitations and simplifications made by traditional standards-based
models, which may either overdimension or overlook certain aspects that are critical in the design. This
outcome establishes a new paradigm in the optimization of simple structural components.

The following section contextualizes these findings in relation to existing literature, analyzes their
practical implications, and discusses the limitations of the study.

3.5 Comparison with Previous Studies

A significant achievement was the 91% reduction in mass, as a result of the additive manufacturing
process. These results significantly surpass those obtained in similar studies [13]. Other research studies
have achieved a 28% reduction in the material used to manufacture crane hooks, which utilize titanium
alloys—materials with high costs and therefore limited industrial applicability. In contrast, this study
has employed AISI 304 steel, which is widely available and low-cost, enhancing the advantage of using
generative Al models to optimize and democratize their use in mass manufacturing [14]. On the other
hand, aeronautical supports were optimized using Al-driven generative design, but dynamic loads were
not considered—an essential aspect addressed in this study through sinusoidal vibrations (+15% of the
static load).

3.6 Practical Implications of Manufacturing Methods

The costs of optimized designs depend on the type of manufacturing methodology used: In additive
manufacturing, which offers greater mass reduction resulting in the use of less material it is also
necessary to evaluate the costs associated with its implementation, as it requires the use of metal 3D
printing equipment and post-processing. Without a doubt, this method stands out and is ideal for
practical applications involving high added value, such as cargo drones or aerospace components, where
weight is a critical factor

Milling and casting: Both options offer a balance between mass reduction and stress distribution. In
terms of mass, they show reductions of 62% and 35%, respectively. This factor would be important to
consider, especially in small and medium-sized industries, such as construction or shipping ports, where
structural robustness and low unit cost are necessary to ensure economic returns and safety.

3.7 Study Limitations

While finite element analysis (FEA) validates the structural performance of the designs, there are key
limitations:

The first is the idealization of loads that is, static and dynamic loading conditions are assumed in a
controlled operational environment. In other words, factors such as corrosion and lateral impacts are not
considered. Fatigue is another aspect that affects the lifespan of components subjected to repetitive load
cycles, which was not addressed in this study. Software dependency, as the results are tied to the
capabilities of Autodesk, which could be a limitation when attempting to generalize the methodology to
other platforms. The aforementioned limitations open new opportunities for future research, such as
integrating specialized fatigue analysis software that incorporates standardized codes in their libraries,
like 1SO 12100.

3.8 Projection Toward Emerging Applications

Renewable energy: Lighter and stronger lifting lugs can reduce installation and maintenance costs of
wind turbines. Electric mobility: Mass reduction helps maximize the range of electric vehicles and
heavy-lift drones by lightening structures without compromising safety.

Circular economy: Lower material consumption (20% savings per unit) aligns the design with
sustainability principles, reducing the carbon footprint associated with steel production (figure 10-13).

Generative Artificial Intelligence has been well studied and reported [15-21].

4. Conclusions

This study has demonstrated that the application of generative artificial intelligence (GAI) in the design
of lifting lugs allows for significant optimization compared to traditional methods based on standards
such as DIN 580. The optimization applied to the initial model through GAI resulted in a substantial
mass reduction of up to 91% using the additive method, without compromising structural integrity. In
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fact, the optimized design outperformed the original in terms of VVon Mises stress (lower values than the
initial model) and showed an increase in the safety factor. All the optimized models displayed a
homogeneous stress distribution, which also led to a notable reduction in maximum displacements from
0.0189 mm in the traditional design to 0.004 mm in the optimized ones. The meaning of these values is
simple and clear: lower displacement translates to more predictable and safer behavior under dynamic
loads, which is crucial for industrial applications involving high mechanical demands. Reducing the
amount of material used implies significant cost savings, especially in large-scale applications. This
reduction contributes to broader goals such as minimizing the consumption of raw materials and the
carbon footprint associated with steel extraction and processing, promoting a sustainable approach to
structural engineering. Despite these promising results, the study has its limitations inherent to finite
element simulations and the assumed operational conditions. It is therefore recommended to carry out
industrial-scale experimental validation of the generative models, which would provide reliable data on
durability and support the scalability and broader application of GAI benefits.

In conclusion, the integration of traditional design tools with generative artificial intelligence opens new
perspectives for the optimization of mechanical components, offering a viable solution that enhances
both structural efficiency and economic and environmental sustainability. These findings represent a
significant advancement in the field of mechanical design and provide a solid foundation for future
research in structural optimization using GAI techniques.
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