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Abstract: Human migration is a complex phenomenon driven by socioeconomic, 

political, environmental, and demographic factors. Understanding and modeling 

migration patterns have become vital for planning, humanitarian response, and 

sustainable development. In parallel, nature-inspired optimization algorithms have 

gained attention for solving complex real-world problems. One emerging 

algorithm, Human Migration Optimization (HMO), draws inspiration from the 

collective behavior of migrating populations and models optimal solutions by 

simulating the movement of agents toward better "settlements" under survival 

pressure. This paper presents a comprehensive review of human migration theories 

and introduces a mathematical foundation for the Human Migration Optimization 

algorithm. The proposed HMO framework is defined with mathematical equations 

and compared with other metaheuristic methods. The effectiveness of HMO is 

highlighted through its unique migration logic, selection pressure, and memory-

based movement. 

 

1. Introduction 

Human migration has historically shaped civilizations and continues to influence economies and 

environments worldwide [1]. Modern migration studies include demographic analysis, push-pull theory, 

network theory, and economic modelling [2,3]. At the same time, the field of optimisation seeks to solve 

high-dimensional, non-linear problems, often using heuristics inspired by natural or social phenomena 

[4]. Recently, the Human Migration Optimization (HMO) algorithm has been introduced to simulate the 

intelligent decision-making processes behind migration patterns for solving complex optimization 

problems [5]. This paper connects classical human migration theories with a mathematical model for 

the HMO algorithm. 

2. Human Migration: Theoretical Background 

Human migration refers to people moving from one place to another, intending to settle temporarily or 

permanently. [6]. Key drivers of migration include: 

 Push factors: war, famine, unemployment. 

 Pull factors: economic opportunities, safety, environmental quality. 

Mathematically, the gravity model can be used to model the migration flow 𝑀𝑖𝑗 between region 𝑖 and 

region 𝑗: 

𝑀𝑖𝑗 = 𝐺
𝑃𝑖

𝛼𝑃𝑗
𝛽

𝐷𝑖𝑗
𝛾  

where,  

 G is a constant 

 𝑃𝑖, 𝑃𝑗 are the populations of regions 𝑖 and 𝑗  

 𝐷𝑖𝑗 is the distance between them 
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 𝛼, 𝛽, 𝛾 are empirical parameters [7]. 

 

The agent-based model (ABM) also simulates individual decisions based on local rules, such as 

economic utility or social networks [8]. 

 

3. Human Migration Optimization (HMO) Algorithm 

Inspired by human migration, HMO simulates a population of agents (individuals or families) who 

move from low-fitness to high-fitness regions, mimicking real migration behaviours such as: 

 Collective decision-making 

 Information sharing and communication 

 Resistance to harsh environments 

 Memory of previously visited locations 

3.1 Algorithm Structure 

The HMO algorithm consists of the following components: 

Step 1: Initialization 

A population 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}  is randomly generated in the solution space. 

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑],     𝑖 = 1, … , 𝑁 

Each solution has a fitness value 𝑓(𝑥𝑖). 

Step 2: Identify Pull Regions 

Regions (solutions) with better fitness than the current location are identified as "attractors." Each 

agent evaluates possible destinations based on: 

𝑆𝑖𝑗 =
𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)

𝐷𝑖𝑗 + 𝜀
 

where 𝐷𝑖𝑗is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗, and 𝜀 is a small constant [9]. 

Step 3: Migration Decision 

Each agent decides to migrate probabilistically based on social influence and survival needs: 

𝑃𝑖𝑗 =
𝑆𝑖𝑗

∑ 𝑆𝑖𝑘𝑘
 

Step 4: Movement Update 

Agent 𝑖 updates its position using: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜆 ∙ (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝜇 ∙ 𝑟𝑎𝑛𝑑𝑛() 

where: 

 𝜆 migration tendency 

 𝜇 noise factor (unpredictability) 

 randn(): normally distributed random number 
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Step 5: Memory and Adaptation 

A memory 𝑀𝑖 of previously visited locations is stored to avoid poor regions: 

𝑀𝑖 = {𝑥𝑖
𝑘|𝑓(𝑥𝑖

𝑘) < 𝑓(𝑥𝑖
𝑘+1)} 

The agent avoids previously failed paths. 

3.2 Convergence and Stopping Criteria 

Convergence is checked via: 

∆𝑓=
1

𝑁
∑|𝑓(𝑥𝑖

𝑡) − 𝑓(𝑥𝑖
𝑡−1)|

𝑁

𝑖=1

< 𝛿 

or maximum iteration count is reached. 

Advantages of HMO 
 

 Social learning: Combines multiple exploration strategies 

 Memory-based navigation: Avoids repeated poor solutions 

 Diversity: Noise and probabilistic decisions preserve exploration 

 Adaptability: Suitable for dynamic environments 

1. Comparison with Other Metaheuristics 

Table 1 provides a comparison of Particle Swarm Optimization (PSO), Genetic Algorithm (GA), 

Migration Birds Optimization (MBO) and HMO. 

Table 1. Comparison of Metaheuristics 

Algorithm Memory Social Influence Exploration Mathematical Basis 

PSO No Global Best Medium Velocity-Based 

GA No Crossover/Mutation High Probabilistic 

MBO Partial V-shaped Pattern High Role-based motion 

HMO Yes Collective Migration High Utility-based motion 
 

4. Conclusion  

Human migration remains a rich domain for both social study and algorithmic modelling. The Human 

Migration Optimization algorithm brings together principles of social behaviour, adaptive learning, 

and spatial reasoning. Through mathematical modelling and social simulation, HMO demonstrates 

potential for solving real-world optimization problems involving resource allocation, logistics, and 

dynamic systems [10-25]. 
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