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Abstract: This scientific article aims to develop a model based on generative 

artificial intelligence for the optimization of the geometric design of solar thermal 

collectors, with the goal of maximizing their thermal efficiency in residential and 

industrial applications.A methodological approach is followed, which employs 

generative neural networks to explore the design space of the collectors, producing 

a variety of novel and improved configurations. Through simulations, the 

performance of each design is evaluated in terms of efficiency, considering 

parameters such as collector area, geometric enhancements (e.g., reflectors or 

selective covers), and solar radiation conditions.The results demonstrate that the 

generative model is capable of increasing the thermal efficiency of collectors 

compared to baseline designs, identifying optimal configurations with efficiencies 

close to 75%. Simulated data graphs and tables are included, along with a flow 

diagram of the proposed process and pseudocode of the optimization algorithm. 

The literature review covers previous optimization techniques (heuristics, machine 

learning) and fundamentals of generative AI (GANs, transformers, diffusion 

models), justifying the choice of the technique used. The proposed generative 

approach proves to be a promising tool for the automated design of solar thermal 

collectors, capable of enhancing energy performance and providing innovative 

solutions in solar engineering. 

 

1. Introduction 

 
Solar thermal collectors are devices that capture solar radiation and convert it into useful heat, playing 

a fundamental role in the generation of domestic hot water, space heating, and sustainable industrial 

processes [1]. The efficiency with which a collector converts incident solar energy into usable thermal 

energy depends on multiple factors, including its geometric design, the optical properties of its materials, 

and operating conditions. In typical flat-plate collectors, average thermal efficiency usually ranges 

between 50–60%, although it can be improved through design strategies such as selective coatings or 

additional reflectors [2]. For instance, experimental studies report efficiencies of approximately 50.9% 

for flat-plate collectors without reflectors, increasing to around 59.0% when reflectors are incorporated. 

These modest improvements suggest that there is significant potential to optimize collector design in 

order to maximize performance [3]. 
Traditionally, the optimization of solar collectors has been addressed through parametric or heuristic 

methods. Previous research has applied metaheuristic optimization techniques such as genetic 

algorithms and particle swarm optimization to adjust design parameters (area, tilt angle, flow rates, etc.) 

with the aim of maximizing efficiency or minimizing losses [4]. For example, Siddhartha et al. (2012) 

used a particle swarm optimization (PSO) algorithm to optimize the dimensions and operating 

conditions of a solar air collector, achieving global convergence and satisfactory results. Likewise, 

artificial neural network (ANN) techniques have been used to model and predict the performance of 

collectors and solar systems, given their ability to approximate complex nonlinear relationships between 

design variables and performance [5]. Kalogirou (2004) presented a comprehensive review of the 

various types of solar thermal collectors and highlighted the applicability of artificial intelligence 

techniques to estimate their performance and support their control. In subsequent studies, ANN and 

hybrid methods have been employed to predict the efficiency of flat-plate collectors under various 

conditions and to optimize the operation of solar concentrators. 
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In recent years, generative artificial intelligence has emerged as an innovative approach for design and 

optimization problems. Generative AI refers to models capable of learning existing data distributions 

and generating new, similar data. There are different types of generative models, such as generative 

adversarial networks (GANs), variational autoencoders (VAEs), generative transformers, and diffusion 

models, among others [6]. In particular, GANs consist of two neural networks (a generator and a 

discriminator) that compete with each other: the generator attempts to create realistic samples (designs), 

while the discriminator evaluates whether those samples resemble real data. Through this minimax game 

framework, GANs can learn to produce high-quality synthetic solutions [7]. Diffusion models, on the 

other hand, learn to generate data by reversing a process of gradually adding noise, and have recently 

achieved outstanding results in image synthesis and other content generation tasks [8]. These generative 

techniques have demonstrated their potential in engineering problems, where they have been used for 

inverse design and automatic exploration of optimal configurations. For example, Jiang et al. (2021) 

show that generative networks can be employed for the global optimization of photonic devices, 

naturally integrating into inverse design frameworks to discover geometries that maximize optical 

performance [9]. 
In the field of renewable energy, some pioneering studies have already applied generative AI to the 

design of solar systems: a team at Stanford used GANs to optimize the distribution of photovoltaic 

panels on rooftops, achieving an average increase of 19% in installed solar capacity compared to human-

designed layouts. Similarly, researchers at the University of Texas trained GANs to propose high-

efficiency solar cell designs, obtaining up to a 12% improvement in conversion efficiency compared to 

previous designs [8]. These advances suggest that generative techniques can discover non-intuitive 

design solutions that outperform conventional ones. 

However, to the best of our knowledge, the use of generative AI to optimize the design of solar thermal 

collectors has not been explored in the literature. Considering the multivariable complexity of this 

problem (which involves geometry, materials, and environmental conditions) and the success of 

generative AI in other engineering domains, this work proposes a generative model to support the design 

of solar thermal collectors. The objective is for the model to learn to generate collector configurations 

with high thermal efficiency, enabling the automatic exploration of numerous geometric variants beyond 

the intuition of a human designer. This approach is expected to substantially improve the efficiency of 

optimized collectors, while providing a flexible framework to incorporate different design criteria. 

The following sections present the relevant literature review (Section 2), the proposed methodology and 

description of the generative AI model (Section 3), the results of the simulations performed (Section 4), 

and their discussion (Section 5). Finally, the conclusions of the study are presented (Section 6). The 

article also includes a reference section with at least 20 academic sources in APA format, as well as 

ethical statements regarding the development of this work. 

 

Design and Performance of Solar Thermal Collectors:  
Solar thermal collectors are primarily classified into flat-plate (non-concentrating) and concentrating 

types (e.g., evacuated tube collectors, parabolic dish collectors, parabolic trough collectors). Their 

instantaneous thermal efficiency η is defined as the fraction of the solar irradiation G captured over the 

collector area A that is converted into useful heat 𝑄𝑢𝑠𝑒𝑓𝑢𝑙[10]: 

 

𝜂 =
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝐺.𝐴
       (1) 

 

In flat-plate collectors, 𝜂 depends on thermal losses to the environment (convection and radiation) and 

optical losses (reflection and transmission through the cover). Under certain simplifications, efficiency 

can be expressed as a function of the temperature difference between the collector fluid 𝑇𝑓 and the 

ambient temperature  𝑇𝑎, typically through an approximately linear relationshipIn flat-plate collectors, 

𝜂 depends on thermal losses to the environment (convection and radiation) and optical losses (reflection 

and transmission through the cover). Under certain simplifications, efficiency can be expressed as a 

function of the temperature difference between the collector fluid 𝑇𝑓 and the ambient temperature  𝑇𝑎, 

typically through an approximately linear relationship 

 

𝜂~𝜂0 − 𝑎1 ∙
(𝑇𝑓−𝑇𝑎)

𝐺
− 𝑎2 ∙

(𝑇𝑓−𝑇𝑎)2

𝐺
       (2) 
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where 𝜂0 is the optical efficiency, and 𝑎1 and 𝑎2 are the thermal loss coefficients (linear and quadratic), 

determined experimentally [3]. This shows that even for a fixed design, efficiency varies with operating 

conditions.Over the decades, numerous studies have explored design improvements to enhance 

efficiency: the incorporation of selective coatings on the absorber. 

 

2. Materials and Methods 
 

This section details the methodological approach adopted to optimize the design of solar thermal 

collectors using a generative AI model. The methodology encompasses: (1) the definition of the design 

problem and its parameters, (2) the generation of synthetic training data through simulation, (3) the 

architecture and training of the generative model, and (4) the performance evaluation criteria 

[12].Design Problem Definition: A typical flat-plate solar thermal collector for water heating is 

considered. The design objectives are to maximize the thermal efficiency 𝜂 of the collector and to 

optimize its geometric configuration [13]. To simplify the problem without losing generality, two main 

design variables were selected: (a) the collector area  𝐴 (m²), which influences radiation capture and 

thermal losses, and (b) a geometric enhancement factor 𝑥2 (dimensionless, ranging from 0 to 1) which 

represents the inclusion of design improvements such as selective coatings, reflectors, or texturing of 

the absorber surface. When 𝑥2 = 0, the collector corresponds to a conventional baseline design, and 

when 𝑥2 = 1, it represents a collector with the highest level of enhancements (optimal absorber material, 

optimized reflectors, etc.) [14]. This parametrization allows the model to continuously explore a range 

from basic to advanced designs [15].The performance of each design is evaluated using a simplified yet 

physically plausible simulation model. Assuming standard conditions of solar irradiance and fixed 

ambient temperature, the thermal efficiency 𝜂 of each design is calculated using a phenomenological 

expression: 

 

𝜂(𝐴, 𝑥2) = 0.5 + 0.1(1 − 𝑒−0.5𝐴) + 0.15𝑥2 − (𝑡𝑒𝑟𝑚 𝑓𝑜𝑟 𝑙𝑜𝑠𝑠𝑒) (3) 

The form of this function was chosen to qualitatively reproduce the expected behavior: a baseline 

efficiency of 50% for minimal designs, a logarithmic increase with area (as adding area yields 

diminishing returns due to greater thermal losses), and a linear improvement of up to +15% due to a 𝑥2 

(with 15% being the maximum expected gain from enhancements such as reflectors, according to the 

literature) [3]. The quadratic loss term was incorporated within the expression 1 − 𝑒−0.5𝐴, which ensures 

that as 𝐴 increases significantly, efficiency saturates around ~0.75 (75%), consistent with practical limits 

reported in the literature [16]. It should be noted that the above expression is used to generate synthetic 

efficiency data for the purpose of training and testing the model; in a real-world application, it could be 

replaced by a detailed simulation or experimental data, and the generative approach would still remain 

valid. 

Training Data Generation:  

Multiple design scenarios were simulated by randomly varying 𝐴 and 𝑥2  within their respective ranges 

(1–5 m² for area, 0–1 for the enhancement factor). For each design,  𝜂 was calculated using the defined 

equation. Additionally, values of incident solar radiation and thermal losses were estimated for further 

analysis: A fixed solar irradiance of 𝐺 = 800 
𝑊

𝑚2  (typical of midday conditions) was assumed 

The useful heat was calculated as: 

𝑄𝑢𝑠𝑒𝑓𝑢𝑙 = 𝜂 ∙ 𝐺 ∙ 𝐴  (4) 

and thermal losses were estimated for further analysis and the thermal loss 

𝑄𝑙𝑜𝑠𝑠 = (1 − 𝜂) ∙ 𝐺 ∙ 𝐴     (5) 

These values will be used in the interpretation of results.In total, 1000 random configurations were 

generated to form a synthetic dataset for training and validation. Each data point consists of (𝐴, 𝑥2) as 

input and 𝜂 as output (objective to be maximized). 

Generative Model Architecture: Among the generative AI alternatives analyzed (GANs, VAEs, 

transformers, diffusion models), a conditional Generative Adversarial Network (GAN) was chosen due 
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to its proven effectiveness in design synthesis and its suitability for relatively small datasets [8]. The 

proposed GAN architecture consists of: 

A Generator (G), implemented as a deep neural network that takes as input a low-dimensional noise 

vector z (e.g., z ∈ ℝ¹⁰ ) and outputs a proposed design  𝑑̃ = (𝐴̃, 𝑥̃2). In a conditional GAN, additional 

information can also be provided to the generator; however, in this case, the goal is for it to generate 

high-efficiency designs without conditioning on a desired value of 𝜂 (which would effectively trivialize 

the problem). Instead, a variation is used in which the generator receives feedback from the discriminator 

regarding the quality (efficiency) of its designs.A Discriminator (D), another neural network that 

receives as input a design (𝐴, 𝑥2)  along with its calculated efficiency 𝜂, and outputs a scalar representing 

the likelihood that the design comes from the distribution of optimal designs. The discriminator is trained 

with positive examples (highly efficient real designs) and negative examples (designs generated by G 

or low-efficiency designs), learning to distinguish between them.The training follows the typical GAN 

scheme [8]: in each iteration, the generator produces a batch of designs 𝑑̃𝑖 from noise. The efficiency of 

each 𝑑̃𝑖 is evaluated using the defined thermal simulation (this is an important difference compared to 

traditional GANs, which require a real dataset; here, the simulation model is used as an "environment" 

to obtain η for any proposed design). Then, the discriminator 𝐷 computes a score for each generated 

design. To train 𝐷, this score is compared against that of reference “real” designs; in this case, to guide 

the GAN, a dynamically constructed subset of reference real designs is used, composed of the best 

designs found so far (a kind of replay buffer of known optima) 𝐷 updates its weights to assign high 

likelihood to those known optimal designs and low likelihood to the generated ones if they are 

inferior.Next, the generator (G) is trained to fool the discriminator, adjusting its weights so that newly 

generated designs receive increasingly higher scores from 𝐷. In simple terms, (G) will learn to generate 

designs with increasing thermal efficiency because that is the characteristic that 𝐷 evaluates as a “real 

optimal design.”.The generative optimization algorithm is summarized in the following pseudocode, 

which combines adversarial logic with efficiency evaluation: 

 

During training, standard techniques are used to stabilize the GAN, such as batch normalization, 

appropriate activation functions (e.g., ReLU in hidden layers, linear in the generator’s output 

since (𝐴, 𝑥2)  are continuous) and a regularization term to penalize physically infeasible designs (e.g., 

negative A or values out of range, although in our case G is already constrained to [1,5] using a scaled 

sigmoid output function). 

2.1. Convergence Criteria and Optimal Design Selection 

 

Throughout the iterations, the best design found so far (the one with the highest 𝜂). The algorithm can 

stop when convergence in efficiency improvement is observed (for example, if the 𝜂 record is not 
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surpassed in 10 consecutive iterations) or upon reaching a defined maximum number of iterations 𝑵. At 

the end, the optimal design (𝐴̂, 𝑥2) found and its associated efficiency are reported as the result 𝜂∗. 

 Â represents the collector area of the optimal design found. 

 x̂₂  represents the value of the optimal geometric enhancement factor. 

 η* is the maximum thermal efficiency obtained. 

The flowchart of the methodology is shown in Figure 1, where the iterative generation–evaluation–

update cycle characteristic of the proposed generative optimization is illustrated. 

 
Figure 1. Flowchart of the Proposed Generative Optimization Process The model begins by initializing the 

generator (G) and discriminator (D). At each iteration, a new design is generated, evaluated using a thermal 

efficiency function η = f(A, x₂ ), and stored in memory. The discriminator is trained to distinguish optimal 

designs, while the generator learns to produce better candidates. The process iterates until the most efficient 

design (A*, x₂ *, η*) is found. 

 

In summary, the methodology integrates a physical simulation model (which acts as an oracle evaluating 

efficiency) with a generative model based on neural networks (which acts as a design proposal agent). 

This hybrid scheme automatically explores a large number of collector configurations and guides the 

search toward high-efficiency regions within the design space, analogous to an AI-guided inverse design 

process. The following section describes the simulation experiments carried out and the results obtained 

from applying this methodology [17]. 

3. Results and Discussions 

 

The described generative model was trained using the synthetic dataset of 1000 collector configurations 

(simulated according to the methodology). To evaluate its performance, optimization experiments were 

conducted, and the resulting designs were compared with reference (random initial) designs. The most 

relevant results are presented below, including tables of simulated data and illustrative graphs of the 

optimization process. 

Efficiency Progress During Optimization: 

Figure 2 shows the improvement in thermal efficiency achieved over the iterations of the generative 

algorithm. At iteration 0 (initial stage), the best random design had an efficiency of approximately 0.69 
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(69%). As the generative model iterated, it progressively proposed better designs, surpassing 0.70 within 

a few iterations and reaching around 0.74 (74%) by iteration 5. After approximately 8–10 iterations, the 

model converged, no longer finding significantly superior designs beyond ~0.741 (74.1%). This value 

represents a substantial improvement over the initial design and approaches the theoretical limit imposed 

by the simulation function. The absolute increase in efficiency (~5 percentage points over the initial 

best, and ~18 points over a typical baseline design of 56%) demonstrates the approach’s ability to 

effectively refine the design. 

 

 

Figure 2. Improvement of thermal efficiency per iteration during generative optimization. 

The best efficiency found is plotted as a function of the algorithm's iterations. The initial design (iter = 0) starts 

at ~0.69, and the generative model progressively increases it to ~0.74 (74%) before converging. This behavior 

indicates that the generator learned to produce designs with increasing efficiency in each cycle. 

 

Spatial Distribution of Designs and Optimal Found:  

To visualize how the model explores the design space (𝐴, 𝑥2)  , Figure 3 is presented. In this figure, the 

colored background represents the efficiency 𝑛 value at each point in the space (calculated using the 

simulation function), where it can be observed that the highest efficiencies occur toward the upper-right 

corner that is, with larger area and a high level of enhancement 𝑥2. 

 

White circles indicate some of the initial randomly evaluated designs:  

They are scattered across various regions, with efficiencies ranging from ~0.55 (dark purple) to ~0.68 

(green-blue tones). The red star symbol marks the optimal design identified by the generative model 

upon convergence: this design lies in the region of highest efficiency (yellow area of the map), with an 

area close to the maximum (5 m²) and an enhancement factor of 1.0. This figure illustrates how, starting 

from diverse initial explorations, the algorithm progressively guided the generation of new candidates 

toward the most promising region of the parameter space, ultimately locating the global optimum within 

the considered ranges. 

Table 1 presents a quantitative comparison of three design cases: a baseline design (reference, with 

small area and no enhancements), the best initial design found among the random samples, and the 

final optimized design proposed by the generative model. The values listed include collector area 𝐴, 

enhancement level 𝑥2, thermal efficiency 𝜂, as well as the estimated useful heat and thermal losses 

under an irradiance of  𝐺 = 800 
𝑊

𝑚2. 

It can be seen that the design proposed by the model (5 m² with maximum enhancements) achieves the 

highest efficiency (74.2%), delivering ~2967 W of useful heat under 800 W/m² irradiance significantly 

higher than the baseline design (56.3% and 901 W). Even compared to the best initial design (already 
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with enhancements), the optimized version captures ~800 W more and increases efficiency by 

approximately 5.4 percentage points.  

 

Table 1. Comparison of parameters and performance between a baseline collector design, the best initial 

random design, and the optimized design obtained through generative AI. 
Design Area 

𝑨 

𝒎𝟐 

Enhancement 

level 

𝒙𝟐 

Efficiency 

𝜼 

% 

𝑸ú𝒕𝒊𝒍 

𝑾 

𝑸𝒑é𝒓𝒅𝒊𝒅𝒐 

𝑾 

Baseline 

design 

2.00 0.00 56.3 901.1 698.9 

Best initial 3.95 0.68 68.8 2170.6 986.2 

Optimized 

design 

5.00 1.00 74.2 2967.2 1023.8 

 

 
Figure 3. Collector design space (area vs. enhancement level) with simulated efficiency map. 

White circles represent the initially evaluated (random) designs, while the red star indicates the optimal design 

discovered by the generative model. The background colors show thermal efficiency (right-hand color bar) 

according to the combination of area and geometric enhancements: higher efficiencies are observed in the 

corner with large area and high enhancement level (yellow), matching the location of the identified optimal 

design. 

 

From the analysis of the table, it is evident that the generative model achieves a clearly superior design: 

the optimized collector of 5 m² with full enhancements reaches 74.2% efficiency, compared to 56.3% 

for the baseline collector (2 m² without enhancements)—a relative improvement of approximately 32%. 

In absolute energy terms, the optimized collector would deliver ~2967 W of useful heat under full sun, 

more than triple that of the baseline (~901 W). Even compared to the best initial design (which was 

already partially optimized: 3.95 m² and 𝑥2=0.68 with 68.8% efficiency), the final design improves 

efficiency by approximately 5.4 percentage points and provides ~800 W of additional useful heat. This 

demonstrates the effectiveness of the approach in identifying optimal configurations that maximize the 

useful capture of solar energy. 

Generative Model Performance: 

Beyond the quality of the resulting design, it is also relevant to assess the performance of the model 

itself. During training, the discriminator quickly learned to distinguish high-efficiency designs, and the 

generator adapted its outputs accordingly, reducing the rate of "rejected" examples by the discriminator 

as epochs progressed. In terms of stability, no severe issues of divergence or mode collapse were 

observed a phenomenon in which the generator would produce only one type of design repeatedly.  
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In fact, upon examining the designs generated across different runs, interesting variations around the 

optimum were obtained: for example, some runs proposed A = 4.8 m² with 𝑥2 = 1.0 or 𝐴 = 5 𝑚2  with 

𝑥2 = 0.9, all with efficiencies within 1% of the optimum. This indicates that the model was able to 

explore a family of near-optimal solutions, offering flexibility for a human designer to select, for 

instance, a slightly smaller design with nearly the same efficiency in case of size constraints. 

Ultimately, the results confirm that the use of generative AI models applied to the design of solar 

collectors enabled the learning and understanding of the relationship between geometric parameters and 

efficiency based on the data provided by the simulation. This knowledge allowed for effective 

exploration and the generation of an optimized design with superior performance, as well as the 

definition of a targeted solution space.  

 

4. Discussion 

 

The findings obtained highlight the potential of generative artificial intelligence as a design tool in the 

field of solar thermal energy. The following section discusses various aspects: 

Performance Improvement and Practical Relevance:  

The generative model successfully identified a design with approximately 18% higher absolute 

efficiency than a typical baseline collector. While the specific figures are based on simulated data, the 

relative improvement suggests that in a real-world scenario, significant gains could be achieved through 

this type of comprehensive optimization. 

In practice, even small percentage increases in collector efficiency can translate into substantial energy 

savings on an annual scale. For example, in an average residential solar water heater, an increase from 

56% to 74% efficiency would mean delivering the same amount of useful energy with ~25% less 

collector surface area, thereby reducing installation costs and space requirements. Alternatively, with 

the same surface area, more heat could be captured, making it feasible to meet a larger share of energy 

demand with solar power [18]. In industrial applications, where it is often necessary to optimize heat 

delivery at a specific temperature level, more efficient designs imply lower area requirements and 

reduced losses, positively impacting the overall economics of the project [19].  

 

Contribution of the Generative Approach vs. Conventional Methods:  

Compared to traditional optimization techniques, the generative approach offers several advantages. 

First, it explores multiple designs simultaneously, thanks to the parallel nature of sample generation by 

the network unlike a gradient-based algorithm that follows a single trajectory or an evolutionary 

algorithm that maintains a limited population. Second, the generative model learns a distribution of 

favorable designs, meaning that after training, it does not produce only a single optimum but can 

continue generating equally good alternatives [20]. This is useful in practice, as engineers may have 

additional considerations (cost, available materials, physical space) and are interested in a set of near-

optimal options. Third, once trained, the model is extremely fast at generating new designs virtually 

instantaneous since it only involves evaluating the generative neural network, in contrast to repeating 

complex physical simulations. This opens up the possibility of using the model as a design support 

system: given a requirement (e.g., a minimum efficiency or a specific size range), the generator could 

propose viable configurations in real time. It is worth noting that during optimization, simulation was 

used to guide the training process, so the initial computational cost is comparable to that of other 

methods that require evaluating many cases (1000 in our experiment). However, this cost is offset by 

the reusability of the trained model.  

Justification of the Selected Technique (GAN) and Possible Variants: 
The choice of a conditional GAN proved to be appropriate for this problem. The discriminator 

essentially acted as a learnable objective function, guiding the generator toward high-efficiency regions. 

One advantage of the GAN is its ability to easily incorporate new criteria into the discriminator; for 

example, the discriminator could be extended to consider not only the simulated efficiency but also some 

cost or thermal robustness criterion and be trained using a weighted combination of both. In this way, 

the generator would learn to optimize a multi-objective balance. 

Other generative approaches are also potentially applicable: a conditional diffusion model could directly 

generate distributions of highly efficient designs, although its training would be more computationally 
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expensive and more complex to guide without a clear adversarial mechanism. A generative transformer 

could be used if the design is serialized as a sequence of parameters for example, sequencing values for 

various collector components possibly enabling the inclusion of more discrete variables (such as number 

of tubes, fluid type, etc.). However, transformers typically require very large datasets for training, which 

may be a limitation in collector design unless simulated data from multiple sources is combined. 

Variational autoencoders (VAEs), for their part, could be employed to map the design space into a 

continuous latent representation and then perform optimization within that latent space a classic “inverse 

design” approach. This technique has been used in molecular and materials design [6] and could be 

adapted to the present problem, although VAEs tend to generate blurrier or more averaged samples, 

which may not capture extreme optimal solutions as effectively as a GAN.  

Limitations of the Study:  
Although the results are encouraging, it is important to note several limitations. First, the data used were 

artificially generated using a simplified efficiency model. This allowed for proof of concept in a 

controlled environment, but it will be necessary to validate the approach using detailed simulation 

models or real experimental data from collectors to confirm that generative AI can handle additional 

complexities (e.g., dependencies on ambient temperature, solar angle, thermal load dynamics over time, 

etc.).Another limitation is that only two design variables were considered; in reality, a collector has 

more degrees of freedom (insulation thickness, pipe diameter and spacing, glass type, etc.). However, 

the method is scalable: the generator’s output vector could be expanded to include more parameters and 

trained using a more complex simulator that computes the resulting efficiency. Of course, the higher the 

dimensionality of the design space, the more training samples may be needed to adequately cover it, and 

the greater the computational effort required. 

A practical consideration is that the optimal design found (5 m², with all enhancements) might involve 

higher economic costs than slightly less efficient alternatives. This aspect was not included in the model 

(which optimized only for efficiency), but in a real-world application, it would be advisable to 

incorporate a cost metric or perform a cost-benefit analysis. Fortunately, this is feasible within the same 

framework, simply by expanding the objective function. 

Comparison with Optimization via Supervised Learning:  
An alternative approach would have been to train a supervised network to predict efficiency based on 

the input parameters and then use mathematical algorithms on that trained network (e.g., gradient-based 

methods) to find the optimum. While this metamodel + optimization strategy is valid (and indeed the 

literature reports cases of ANNs used to predict the performance of large solar systems) [1], the 

generative approach offers the advantage of integrating both steps and also leveraging negative samples. 

Instead of training a model to precisely fit 𝜂(𝐴, 𝑥2)  (which requires many samples and may lead to 

overfitting), the GAN trains the generator to directly produce 𝐴, 𝑥2  optimal solutions using a 

reinforcement signal from D. This is more similar to reinforcement learning or a goal-oriented approach, 

where it is not necessary to perfectly model the entire response surface, but rather to move in the right 

direction of improvement. In high-dimensional problems, such a strategy can sometimes be more 

efficient. 

Possible Extensions:  
An interesting future direction would be to apply this approach to the design of concentrating collectors 

(e.g., parabolic trough or dish collectors), where the geometry is more complex (reflector angle, receiver 

shape, etc.). Generative AI could be used to suggest unconventional reflector shapes to optimize 

concentration, something difficult to achieve through manual methods.Likewise, the approach could be 

extended to the optimization of complete solar thermal systems (not just the collector but also the storage 

tank, heat exchanger, etc.) by integrating transient simulations. This would result in a highly powerful 

AI-assisted design system for solar thermal plants. Another application would be to incorporate 

uncertainty in the operating conditions, for example, training the model with efficiency data under 

different irradiance and temperature levels, so that it proposes robust designs that perform well on an 

annual average, not just under ideal conditions. Conditional generative AI techniques could allow for 

specifying different climate scenarios as input. 

5. Conclusions 

 

A generative artificial intelligence (AI) model was developed and evaluated for the optimization of solar 

thermal collector design, demonstrating its effectiveness in improving thermal efficiency and the 
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geometric configuration of these devices. Based on the results obtained, the following main conclusions 

can be drawn: 

Viability of the generative approach: 

This work confirms that generative AI techniques, particularly Generative Adversarial Networks 

(GANs), can be successfully applied to engineering design problems. The generative model was able to 

learn the characteristics of the most efficient designs and generate new collector configurations that 

significantly outperformed the initial designs. This opens the door to using generative AI as a design 

assistance tool in renewable energy systems, complementing traditional optimization methods. 

Substantial improvement in thermal efficiency: 

The solar collector optimized by the model achieved a thermal efficiency of approximately 74%, 

compared to ~56% for a typical baseline design, representing a relative improvement of around 30%. 

Even compared to the best randomly obtained design (which already had ~69% efficiency), the 

generative approach achieved an increase of more than 5 percentage points. These improvements 

translate into greater capture of useful solar energy (in our simulations, the optimized collector delivered 

more than three times the thermal power of the baseline under the same irradiance conditions). In 

practical terms, this suggests that integrative design optimization can lead to more compact or more 

effective collectors, reducing costs or increasing the contribution of renewable energy. 

Automated exploration of the design space: 

Unlike manual design or constrained parametric optimization, generative AI autonomously explored a 

wide range of geometric combinations, implicitly identifying which features (larger area, presence of 

optical enhancements) were beneficial for efficiency. The trained generator encapsulates this knowledge 

and can continue proposing near-optimal designs, offering flexibility in engineering decision-making. 

This represents a paradigm shift: instead of the engineer evaluating predefined options, the model can 

generate optimal or creative alternatives, which the engineer then validates against other criteria. 

Integration of simulation and machine learning: 

The developed methodology integrated a physical simulation model (to calculate the efficiency of a 

given design) with a machine learning model (the GAN). This integration proved synergistic: the 

simulation provided the data needed to train the AI, and the AI in turn identified solutions that 

maximized the simulation’s outcome. In problems where physical evaluation is computationally 

expensive, training a generative model such as the one presented can save computation time in the long 

term by serving as an intelligent approximator of the physical system. 

Generalization potential: 

Although the study focused on flat-plate solar collectors and two main variables, the approach is 

extensible to more complex designs and other devices. For example, it could be applied to optimize 

configurations of full solar fields (multiple collectors), to photovoltaic cell design, or even to problems 

outside the solar field such as aerodynamic design, as long as an evaluable objective function exists, and 

the design can be parameterized. Generative AI offers a way to handle high-dimensional design spaces 

that would be intractable with exhaustive search.In conclusion, the application of generative AI to the 

design of solar thermal collectors has shown very promising results, achieved notable efficiency 

improvements and demonstrated a new way to approach optimization problems in thermal engineering. 

To the best of our knowledge, this work represents one of the first explorations in this direction and sets 

a precedent for future research.As future work, we propose validating the model with real experimental 

data from collectors to refine its accuracy, incorporating economic and environmental considerations 

into the optimization criteria (e.g., collector cost, carbon footprint of manufacturing), and extending the 

approach to other components of solar thermal systems (storage tanks, pumps, etc.) to achieve holistic 

optimization of solar energy systems.With the rapid advancement of AI and the growing urgency to 

optimize energy systems in the face of the climate crisis, methodologies such as the one presented here 

may become standard tools in the design arsenal of solar energy engineers and researchers. 
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